Category Archives: Eclipse Engineering

How Material and Spring Type Affect Friction Calculation

Dynamic Sealing Applications

This article will discuss how we understand and control friction in dynamic sealing applications.

It’s easy to stop a leak in a system by just welding it shut. But when you create a dynamic application, you generally have a limited amount of power to move the device you’re sealing.

Friction is a force that must be overcome in all moving pieces. Controlling friction allows us to make efficient equipment that can have a long wear life and move with a limited amount of force.

There are many factors that drive friction up or down in a dynamic application. Although this blog will focus on shaft seals, the same considerations apply to piston or face seals.

Below we’ll cover the following factors and how they affect the friction calculation in our seals:

  1. Shaft material, hardness, and finish.
  2. If the system will operate when lubricated or dry.
  3. The system pressure or vacuum.
  4. System operating temperature
  5. Seal material and the types of fillers.

canted flange with hardware

Seal Substrate

As a seal supplier, we usually like shaft materials to be hardened steel with surface finishes that are highly effective. Hardness above 50 Rc usually gives long wear life.

Having a good finish of 8 Ra. will insure long seal life and carry lubrication. However, depending on the application, there are times when a super finish of 2 or 3 Ra is justified.

Depending on shaft loading, there are many choices of surface finish that can reduce friction and improve the life of the seal. Understanding the bearing load under the seal helps to understand what finish is required to withstand the operating conditions.

There are some finishes that are detrimental to seal life. An example is a heavy chrome surface that looks sturdy, but usually can’t be ground smooth and is left with large peaks or valleys. Thin, dense chrome is often the opposite, giving good seal life if applied correctly. The engineers at Eclipse Engineering are prepared to make recommendations on hardness and finish. Continue reading How Material and Spring Type Affect Friction Calculation

The Advantages of Crimped Can Seals

A combination of crimped can seals will handle a variety of applications when a rubber lip seal is not your solution.

Rotary seals are often secured in sealing hardware by crimping the sealing element in a metal can. One of the most common rotary seals is a molded rubber lip seal in a can. 

While not crimped, the can retains the sealing element, and stops the seal from rotating in the gland. Rotary sealing elements for low pressure (under 15 psi), are often nitrile or Viton rubber sealing elements.

This style of seal comes in many cross sections, and may include garter springs to help the seal stay engaged with the shaft. These seals are typically low in cost, and produced in high volume.

These seals are found in many low-pressure applications. However, as the pressures begin to climb over 10 psi and speeds run over 500 ft/min, friction generates heat, which accelerates wear on the rubber element and in turn begins to wear the mating shaft material.crimped can seal

Overcoming Friction

Friction or the resultant heat is the largest concern in rotary service.

The crimped can seal with PTFE (Teflon) elements can run with pressures in excess of 500 Psi and PV (pressure- velocity) reaching over 350,000psi-ft/ min. The crimped can allows these elements to remain secure.

The crimped case seal causes all the relative motion to remain at the sealing lip interface. With the crimped can, we have the opportunity to install multiple lips or seal cross sections to handle a variety of loads. This allows us to control leakage, and keep friction to a minimum.

We can seal most any fluid or run dry sealing gases with little or no lubrication. With widely varying temperatures, we can include springs to maintain seal contact, offset some eccentricity of shafts, keep dirt out or keep very light loads.

Continue reading The Advantages of Crimped Can Seals

Case Study: Replacing U-Cups with PTFE Spring Energized Seals in High Temperature Applications

Being commodity items, U-Cups are readily available in a number of materials and can be found on-the-shelf from multiple distributors and manufacturers in many standard sizes.

Named for the shape of their cross-section, a U-Cup’s design will be pressure energized increasing sealing effectiveness when compared to a standard O-Ring.

This means as pressure increases, the sealing lips are continually forced into the mating hardware surface, ensuring good contact at all times.

The simple and easily moldable design is an effective sealing solution to many systems in both hydraulic and pneumatic applications. Modifications in lip thickness and inclusion of an O-Ring Energizer can tailor sealing loads and wear life to specific situations.Spring Seal and U Cup

A key advantage to an elastomeric U-Cup is the relatively small and simple hardware space needed. Because of their flexible compounds, most U-Cups can be installed in a solid gland configuration.

A basic ID or OD groove is all you need for proper seal retention. Plus, no special tools or considerations need to be taken for correct installation.

U-Cups are available in many of the same compounds as standard O-Rings such as Nitrile, Fluorocarbon, and EPDM, but polyurethanes may be the most common material.

Urethane provides a good combination of elasticity/pliability and toughness. Therefore, it exhibits good sealing characteristics as well as, durability and wear resistance.

These desirable qualities make U-Cups an optimal solution for many sealing systems across multiple industries and they can be found in countless standard products. But Eclipse is approached many times a year with customers pushing the limits of standard U-Cups and in need of better solutions.

The Client’s Issue

Eclipse was approached by a leading pneumatic cylinder manufacturing seeking a sealing solution for a unique application.

While U-Cups typically provide optimal sealing performance in pneumatic cylinders, this application presented a difficult challenge.

The air cylinder was to be used as an actuator for a latch on a large industrial oven. While pressures, speeds, and cycle times were nothing out of the ordinary, the temperature at which it had to operate at was — a continuous 500°F.

Continue reading Case Study: Replacing U-Cups with PTFE Spring Energized Seals in High Temperature Applications