Category Archives: GYLON EPIX

Raising the Gasket / Surface Profile in Aging Systems

Enhancing the surface profile can improve sealing capabilities, extending the functionality of aging piping systems in chemical plants.

There are many aged and aging process plants in operation today. In fact, many of the processing plants for power, chemicals, oil, etc., have been in service for more than 50 years. And while the piping itself may remain intact, their bolted flange gasket joints and connections are becoming misaligned, corroded and damaged due to repeated handling, chemical exposure and thermal cycling. This can lead to costly ruptures that may result in millions of dollars in damages, downtime, noncompliance penalties, irreparable environmental impact and litigation.

There is a solution that can extend the life of aging piping systems, preserving their functionality: raising the surface profile on polytetrafluoroethylene (PTFE) gaskets. This design modification can prevent leaks, spills and other releases in chemical processing plants by reducing and managing the contacted area of the gasket, thus achieving and maintaining a strong seal.

A Brief History of Gasket Technology

Traditionally, gasket thickness and sealability always involved a performance tradeoff. One could use 1/16-inch-thick (1.6 millimeter) gaskets when flanges were in good condition, achieving a tight seal with reduced creep.

However, when the flanges had bad or misaligned surfaces, the seal integrity was degraded.

In those instances when the flanges are in poor condition (or if the shape of the flange condition is unknown), one would choose a 1/8-inch-thick (3.2 mm) gasket. The reason? A user does not want to risk installing a thinner gasket and discover that it does not seal properly, which then requires a timely and costly uninstall and reinstall. However, the thicker gaskets do not seal as well as their 1/16-inch counterparts when placed under comparable load. Additionally, with the thicker gaskets, creep is higher, requiring re-torque.

To address the limitations of both gasket options, the ideal gasket should combine the creep resistance of a 1/16-inch gasket with the compressibility and conformability of a 1/8-inch gasket—easier said than done.

Historically, gaskets have not always been forgiving, easy to use or simple to remove. Yet technology has evolved, allowing sealing products to be engineered and designed to optimize the work that is put into them, delivering a tighter, more durable seal.

The approach is one that does not focus on the gasket thickness but rather its surface profile. The results produce gaskets that reduce leaks, spills and other releases from piping systems, including those of aging chemical plants.

gylon epix sheet
Gylon EPIX Sheet Material

Raising the Gasket Profile

The concept of using surface profiling to reduce area and increase stress is found in many products, such as running shoes and car tires. Reducing the contact area while maintaining a given amount of compressive force results in increased stress. In the case of shoes or tires, this stress provides traction. In the case of gaskets, traction or friction between a gasket and a flange face is critical to holding internal pressure. If the downward force created by the fasteners in a flange is evenly spread over a larger area, the created stress contributes to making a seal more effective. This approach enables the aging piping system to maximize its sealing potential.

Impact on Raising Gasket Profile

Surface profiling positively impacts gasket technology in five key areas: compressibility, pressure resistance, scalability, load retention and dimensional flexibility.

Compressibility

Compressibility is a critical functionality of gaskets, as it represents the ability of the gasket to conform to the surfaces that it seals. Adding raised features to the surface of a gasket directly impacts compressibility by reducing the contact area and increasing the resulting stress.

When flange surfaces are worn, pitted or scratched—such as those in aging piping systems in chemical plants—it can be cost prohibitive and nearly impossible to repair/replace the flange to a “good as new” condition. The more compressible the gasket, the better chance of producing an effective seal with the flanges. Continue reading Raising the Gasket / Surface Profile in Aging Systems

The Ideal PTFE Gasket for Tough Applications – GYLON EPIX

The search for the ideal Polytetrafluoroethylene (PTFE) gasket has been elusive. Competing applications and workplace variables have led to the creation of myriad solutions, yet none that has proven fully adaptable and appropriate for universal adoption.

Garlock Sealing Technologies considered this to be a critical yet entirely solvable shortcoming. And it is against this backdrop that in 2016, they set out to compile a comprehensive list of attributes for the ideal PTFE gasket — a wish list, as it were — in order to build a better gasket.

Working with a third-party survey development company, Garlock developed an exhaustive questionnaire that probed every aspect and functionality of PTFE gaskets, testing and adjusting the questions until they had a workable, finalized version.

Using this final questionnaire, Garlock conducted extensive interviews at 15 major chemical processor companies, speaking with 20 engineers responsible for process operations, projects, maintenance and reliability. The goal was simple: to discover the ideal characteristics and their relative importance that engineers sought in a PTFE gasket.

After several months of data collection, Garlock analyzed the feedback and noted the most popular responses:

  • 28% of respondents said that they struggled with how different gaskets required different compressive loads and how to ensure that those gaskets had been installed properly
  • 21% expressed frustration with the creep properties of PTFE gaskets
  • 21% desired a gasket that seals with less compressive load
  • 14% expressed frustration at the installation inconsistencies of their fitters
  • 14% expressed frustration with leaking, especially after a successful installation and start-up

From those answers, Garlock drew the following conclusions, representing the most desirable and essential PTFE gasket characteristics:

  • Seal: Seals easily
  • Installation and assembly: Forgiving of poor installation or assembly practices
  • Forgiving: Forgiving of poor flange conditions
  • Retention: Maintains a seal after installation
  • Flexible: Can be used in a broad range of services to avoid user confusion and reduce inventory

Introducing: GYLON EPIX

Garlock used this feedback in developing a next generation PTFE gasket — GYLON EPIX. Featuring a hexagonal surface profile, GYLON EPIX offers superior compressibility and sealing for use in chemical processing environments. Its enhanced surface profile performs as well or better than existing 1/16″ or 1/8″ gaskets, allowing end-users and distributors to consolidate inventory, lower the risk of using incorrect gasket thicknesses and reduce stocking costs.

GYLON EPIX checks off the most desirable gasket attributes:

  • Installation and assembly: Even distribution of the bolt load over the contacted area of the gasket during the assembly process
  • Retention: Retention of the bolt load administered at assembly
  • Seal: Efficient translation of bolt load to sealing performance
  • Forgiving: The ability to perform in imperfect flanges and installation conditions

GYLON EPIX with its raised, hexagonal profile allows it to perform the job of both traditional 1/16” and 1/8” gaskets. It accomplishes this by combining the bolt retention of the former with the forgiveness for bad flange conditions of the latter, a truly innovative feature for PTFE sheet gasketing. Continue reading The Ideal PTFE Gasket for Tough Applications – GYLON EPIX

Gaskets for High-Density Polyethylene Flanges

Recent gasket failures in flanged joints of High Density Polyethylene (HDPE) piping.

Problem

HDPE piping joints are typically thermal fusion welded joints, but flanges may also be used. When flanges are used, an HDPE flange adapter with a metal backing ring is fused to HDPE piping, as shown in Figure 1. The HDPE flange adapters are used to connect to other flanged fittings, such as valves, elbows, tees, etc., with gaskets inserted between the flanged fittings.

Incident Description

Picture of Eroded GasketIn 2018, two HDPE flange adapter gaskets on two different valves that were part of an underground fire suppression system at a Department of Energy (DOE) nuclear facility in Amarillo, TX failed, causing several weeks of unplanned interruptions to nuclear facility operations. Fire suppression water was isolated to two nuclear facilities, requiring nuclear operations to be paused and fire watches to be established. Both couplings were installed by the same contractor and had been in service for approximately eight years. Both flanges were correctly torqued to 160 foot-pounds with no indication of the necessary re-torque. The initial failure of the gasket caused a low flow, high-pressure leak that was not detected for some time. Picture of Flange Face ErosionWith the system pressure operating at approximately 150 pounds per square inch (psi), the orifice created by the failure of the gasket(s) between the two flanged faces created a water jet, which eroded the metal valve flange and bolts.

Because HDPE will relax after the flange bolts are torqued, a re-torque after 24 hours is required. Even after the bolts are re-torqued, the face stresses drop to 400–600 psi. The lower face stress reduces the friction for maintaining the gasket in between the flange faces. The challenge is finding a gasket that can handle pressures that may exceed 200 psi, gauge (psig), but also seal well at relatively low stresses.

Due to the many inquiries from customers and engineering firms for gasket applications involving HDPE piping, Garlock, a gasket manufacturer, published a memo in January 2017 recommending using either GYLON® Style 3545 or MULTI-SWELL™ Styles 3760/3760U as the best options for HDPE flanges, even though the available compressive loads are lower than recommended. The reinforced gasket material of the GYLON and MULTI-SWELL has proven to prevent the internal water pressure from damaging the gasket under low-compression loads.

Other gasket manufacturers may have similar gaskets that will work for this application. It is important for the Design Engineer to work with the gasket manufacturer to properly specify the correct gasket.

Recommendations to HPDE Piping and Flanged Joints

When using HPDE piping with flanged joints, ensure that the flange bolts are re-torqued at least 24 hours after gasket installation.

When evaluating gasket material, be sure to include any surge pressure that could be caused by opening valve and starting pumps. Also, include any additional design/safety factors in your gasket calculation. And, directly work with the gasket manufacturer in making a selection.


If you have questions about HPDE piping and flanged joints or any other engineering applications, contact Gallagher Fluid Seals.

Original article written by Brian Rhodes, Department of Energy.

[VIDEO] Application Guidance for GYLON EPIX™

GYLON EPIX™ WebinarWe recently added the GYLON EPIX™ – The Next Generation in PTFE Gasketing webinar to our website.  The webinar discusses Garlock’s revolutionary new gasketing material, with its patented hexagonal surface, which concentrates gasket stress, providing improved compressibility and bolt load retention, improving sealability and blowout resistance.

Below is the third and final section of the webinar, which provides application guidance for GYLON EPIX™, calling out where it makes most sense to utilize this revolutionary new material.

[VIDEO] Features & Benefits of GYLON EPIX™

GYLON EPIX™We recently added the GYLON EPIX™ – The Next Generation in PTFE Gasketing webinar to our website.  The webinar discusses Garlock’s revolutionary new gasketing material, with its patented hexagonal surface, which concentrates gasket stress, providing improved compressibility and bolt load retention, improving sealability and blowout resistance.

Below is the second section of the webinar, which discusses the features and benefits of the GYLON EPIX™ material, and what differentiates it from any other gasketing material on the market today.

[VIDEO] Introduction to GYLON EPIX™

GYLON EPIX™ WebinarWe recently added the GYLON EPIX™ – The Next Generation in PTFE Gasketing webinar to our website.  The webinar discusses Garlock’s revolutionary new gasketing material. With its patented hexagonal surface, GYLON EPIX™ concentrates gasket stress, providing improved compressibility and bolt load retention, improving sealability and blowout resistance.

Below is the first section of the webinar, diving into what drove Garlock to create this new material, and how GYLON EPIX™ provides the benefits of both a 1/16″ and 1/18″ thick gasket in one, universal, 3/32″ thickness.

NEW! GYLON EPIX™ Webinar Now Available

GYLON EPIX™Gallagher recently added the GYLON EPIX™ Webinar to its website. This video is a recorded webinar discussing GYLON EPIX™ – The Next Generation in PTFE Gasketing.

This material is a newly developed family of PTFE gaskets. It is manufactured using a patented, profiled surface based on our proven Fawn  (Style 3500), Off-White (Style 3510), and Blue (Style 3504) GYLON® to create highly conformable materials for optimum sealing performance.

GYLON EPIX™ will provide superior functional performance by combining the traditional attributes of GYLON® with an innovative surface design. It offers a broader range of applications than traditional PTFE gaskets that are used in worn and pitted flanges. In addition, GYLON EPIX™ delivers the tight sealing and load retention properties of 1/16” (1.6mm) and the conformability of 1/8” (3.2mm). The hexagonal profile provides improved compressibility and recovery. The profiled surface reduces the contact area during initial compression to concentrate the compressive force of the flange for improved sealability.

Garlock GYLON EPIX™Designed for increased compressibility, it improves performance in misaligned flanges. The consolidation of two thicknesses to one reduces the need to inventory multiple thicknesses. Garlock is dedicated to providing real sealing solutions that meet real world sealing needs. With an improved design, color-coded materials, and single thickness, GYLON EPIX™ makes sealing easier.

To learn more, download the webinar today!

Case Study: Eliminating Epoxy Use on Flanges

GYLON EPIX™ is a family of gaskets that effectively seals a broader range of applications and is more forgiving during the installation process.  It allows the end user to save valuable turn-around time, reduce re-work, and lower costs, helping them to finish ahead of schedule and under budget.

GYLON EPIX™ features a hexagonal surface profile that provides the torque retention and blowout resistance of a thin gasket and the conformability of a thicker gasket.  GYLON EPIX™ Style 3504 EPX is a high performance, aluminosilicate microsphere filled PTFE sheet material designed for use in moderate concentrations of acids, and caustics, as well as hydrocarbons, refrigerants, and more.

EPIX™ - Phosphate Plant

INDUSTRY

Chemical

CUSTOMER

Phosphate Processor

Continue reading Case Study: Eliminating Epoxy Use on Flanges

GYLON EPIX™ Distributes Load Evenly

GYLON EPIX™ is a newly developed family of PTFE gaskets. It is manufactured using a patented, profiled surface based on our proven Fawn, Off-White, and Blue GYLON® to create highly conformable materials for optimum sealing performance.

THE EPIX™ DIFFERENCE

GYLON EPIX™ and a traditional full face gasket were installed in a 3”-150# flat face flange at 120 ft.lbs. with pressure sensitive film.  The film revealed that the traditional material saw heavier loading-near and around the bolts, and lighter loading at the points furthest from the bolts. The GYLON EPIX™ was able to distribute the load more evenly and prevent the low loading phenomenon.

GYLON EPIX™ with Pressure Sensitive Film

The pressure sensitive film was then analyzed with special software that translate the various shades of red into a full color spectrum that provides a better visualization of the stresses that were developed on each of the gaskets. Again, while the traditional gasket saw areas of lower stress (green and blue areas), the hexagonal pattern in the GYLON EPIX™ concentrated and distributed the stress more evenly across the entire gasket.

Continue reading GYLON EPIX™ Distributes Load Evenly

Case Study: Copper Mining Leakage Issues

GYLON EPIX™ 3504 EPXGYLON EPIX™ is a family of gaskets that effectively seals a broader range of applications and is more forgiving during the installation process.  It allows the end user to save valuable turn-around time, reduce re-work, and lower costs, helping them to finish ahead of schedule and under budget.

GYLON EPIX™ features a hexagonal surface profile that provides the torque retention and blowout resistance of a thin gasket and the conformability of a thicker gasket.  GYLON EPIX™ Style 3504 EPX is a high performance, aluminosilicate microsphere filled PTFE sheet material designed for use in moderate concentrations of acids, and caustics, as well as hydrocarbons, refrigerants, and more.


INDUSTRY

Mining

CUSTOMER

Copper Mine

BACKGROUND

Customer reported problems with continuous leaks that required ongoing maintenance and attention taking manpower and resources away from other critical operations for the plant.

Continue reading Case Study: Copper Mining Leakage Issues