Category Archives: Garlock

Braided Packing Materials: From Flexible Graphite To Fiberglass Rope

picture of braided packingIt’s highly likely that, at some point or another, you have seen braided packing in or out of its “natural environment.” Braided packing looks like rope and is cut into rings that wrap around a rod. While packing used to be available in fairly limited styles, the mechanical packing industry has expanded over time, resulting in braided packing that is available in everything from flexible graphite to fiberglass yarn. Let’s dive into this topic, and discuss the different materials from which braided packing is made in this day and age.

Fiberglass Rope

One of the reasons why fiberglass ropes are favored for braided is that it does not burn. It can be used in continuous temperatures, up to 1,000 degrees Fahrenheit. This makes it perfect for products that are going to exist in high pressure, high-temperature environments. Furthermore, E glass in particular consists of more than 50% SiO2. SiO2, as well as B2O3, are prominent network formers, further emphasizing the usefulness of this product.

Flexible Graphite

Flexible graphite is another product used for braided packing, in part because it is made up of 95% to 99% carbon. It is the softest material, and has a score of 1 out of 10 on the Mohs hardness scale, but can resist high temperatures, and has high levels of chemical resistance. While some favor fiberglass rope over flexible graphite, it remains a classic material associated with braided packing.

Ceramic Fiber Cloth

A product known for its ability to withstand high temperatures is ceramic fiber cloth. This particular material is known to withstand temperatures up to 2,300 degrees Fahrenheit — making it even more durable than fiberglass rope. The strength of this particular product means that it shouldn’t be discounted, even when compared to flexible graphite and fiberglass rope.

Ultimately, the types of materials used for braided packing can depend on exactly what the braided packing will be used for, as well as the costs associated with the order and the long-term needs of the buyer. However, when choosing a material, one will not receive poor results when relying upon the materials like fiberglass rope, flexible graphite, and ceramic fiber cloth. There is a reason why these materials have long been valued in the braided packing industry.


The original article was featured on Mineral Seal Corporation’s website and can be found here.

For more information about compression packing and braided packing, contact Gallagher Fluid Seals today.

Case Study: Water Treatment Style 206 Expansion Joint

picture of style 206 expansion jointFacility Issue:

In a brine concentrator, an original competitor’s expansion joint failed upon start up.

Industry:

Water Treatment

Background of the Facility:

This facility is a Zero Liquid Discharge (ZLD) power plant. Water is initially pumped from a well, pre-treated, used as process water, then reclaimed and retreated with a Brine Concentrator for use in their cooling towers. No city water is used and no waste water is disposed of from the site.

Brine concentrators use thermal energy to evaporate water, which is subsequently condensed and discharged as clean distilled water.

Brine Concentrators are also used in water treatment facilities in desalination plants, mining operations and well drilling operations in the oil & gas industry.

  1. Size: 24 “x 10” FF
  2. Temperature: 221° F
  3. Media: Brine Slurry
  4. Pressure: 30 psi

Observation:

The original expansion joint unfortunately failed catastrophically without warning on start up. After consultation with the OEM of the Brine Concentrator, the recommendation was that only Garlock Expansion Joints be used for this aggressive application. The original expansion joints were replaced with Style 206 expansion joints which are built with a 4 to 1 safety factor.

Value Proposition:

Upon start up, Garlock Style 206 expansion joints offered superior performance, reliability and service life. This in turn improved plant safety, increased the mechanical integrity of equipment, and allowed Garlock’s customer to gain a competitive advantage in the market place.


The original article was featured on Garlock’s website and can be found here.

Gallagher Fluid Seals is an authorized distributor of Garlock gaskets, packing, expansion joints, and more.

For more information, contact Gallagher Fluid Seals today.

 

GYLON EPIX 3504 Helps Chemical Manufacturer

GYLON EPIX™ - 3504 EPXGYLON EPIX® is a family of gaskets that effectively seals a broader range of applications and is more forgiving during the installation process.  It allows the end user to save valuable turn-around time, reduce re-work, and lower costs, helping them to finish ahead of schedule and under budget.

GYLON EPIX® features a hexagonal surface profile that provides the torque retention and blowout resistance of a thin gasket and the conformability of a thicker gasket.  GYLON EPIX Style 3504 is a high performance, aluminosilicate microsphere filled PTFE sheet material designed for use in moderate concentrations of acids, and caustics, as well as hydrocarbons, refrigerants, and more.


picture of chemical plantINDUSTRY

Chemical

CUSTOMER

Chemical Manufacturer and Distributor

BACKGROUND

Loading stations are very critical in the chemical industry as flanges are disassembled and reassembled everyday.

CHALLENGES FACED

Due to the dangerous media being transported through the flanges there is a high risk of incidents and human harm, making it necessary for the gaskets to only be used once. For this reason the customer was looking to evaluate a solution that was more adaptable than the current gaskets being used.

OPERATING CONDITIONS

  • Temperature – Ambient outdoor temperature
  • Application – Flange connections at the load/unload station (4 stations). Flanges EN1092-1 Type 01, PN10-40, 316 TI stainless steel
  • Media – Sulfuric Acid (Oleum) with a concentration of 94%
  • Pressure – 2 bar/29 psig

SOLUTION AND BENEFITS

GYLON EPIX 3504 PTFE gasket with Aluminosilicate Microspheres is specifically designed for use in applications where many acids and caustics are present, making it the ideal solution in the loading stations. GYLON EPIX 3504 performed exceptionally during the 110 day evaulation allowing the customer to continue use with confidence.


The original case study can be found on Garlock’s website.

Gallagher is your source for all of your Garlock sealing needs.  If you have further questions regarding the GYLON EPIX™ 3504 EPX, or any other Garlock products, please do not hesitate to contact us. Our engineering department is always ready to help you design a sealing solution to your toughest application!

Case Study: Style 204 Expansion Joint w/ GUARDIAN® FEP Liner – Paper Mill

Garlock Style 204 Rubber Expansion Joint

picture of style 204The Style 204 family of spool-type expansion joints are manufactured with the industry standard narrow arch design. This style is intended to be used in dynamic conditions where both pressure and vacuum concerns are present.

Features and Benefits

  • Fully laboratory and field tested for long life and exceptional reliability
  • High pressure and vacuum resistance offer increased safety and ensure suitability for a wide range of applications
  • Single and multi-arch designs are available for a range of movement capabilities
  • Concentric and eccentric reducing configurations can be provided to join piping of unequal diameters
  • Available in a variety of elastomers and fabric combinations to meet the varied demands of temperature, pressure, and media

picture of paper mill

INDUSTRY

Pulp and Paper

CUSTOMER

Large South Eastern Paper Mill

BACKGROUND

A U.S. paper mill experienced multiple failures of expansion joints on the knotter screen pumps in the fiber area of the plant. The failures caused significant downtime and posed a safety hazard to employees working in the area.

OPERATING CONDITIONS

  • Size- 24”ID (DN600)
  • Temperature- Less than 250°F (120°C)
  • Application- Knotter screen feed pump
  • Media- Black liquor with wood fiber
  • Pressure- Less than 65 psi (4.5bar)

CHALLENGES FACED

A field survey determined that the expansion joints were experiencing significant elongation during installation. It was also evident that the pump and pipe flanges were not in parallel, creating angular misalignment. Additionally, the expansion joints were handling an aggressive media of black liquor and wood fibers, which collectively contributed to the failure.

SOLUTION AND BENEFITS

Through on-site troubleshooting and surveying of the expansion joints, engineers were able to recommend and design an adapter plate for the pump flanges to realign the pump to the piping. This allowed the plant to standardize the replacement expansion joints to Style 204 with GUARDIAN® FEP liner to be used in multiple locations. In addition, the mechanical bond of the GUARDIAN® FEP liner provided greater reliability than the adhesive bond of competitive PTFE lined expansion joints. Replacement cost and frequency has been significantly reduced as a result of this engineered solution.


The original case study can be found on Garlock’s website here.

Gallagher Fluid Seals is an authorized distributor of Garlock. For questions about products or to learn more about rubber expansion joints, contact our engineering department.

Next Level PTFE Performance for Sanitary Applications

Bacteria accumulation can ruin product and put consumer health at risk.

Bacteria accumulation is a serious issue in the food manufacturing industry – it can ruin product and put consumer health at risk.

While many know that Polytetrafluoroethylene (PTFE) is an excellent choice for use in diaphragms and gaskets, most do not realize that there exist varying grades of PTFE. Some lower cost PTFE offerings may contain an excessive volume of pores within their structure which can harbor organic contaminants such as bacteria.

To address this problem, a calendared manufacturing process is used. Calendared PTFE is a premium grade PTFE designed for use in aseptic applications requiring ultra-high purity standards. It is ideal for use in food, pharmaceuticals and a variety of clean markets.

picture of molded diaphragm
Molded Diaphragm made from calendared PTFE

Distinguished by an extremely low void content, calendared PTFE resists permeation and the accumulation of foreign matter, reducing the risk of harboring unwanted bacteria or residual media.

To achieve this, the unique manufacturing process orients the chains of PTFE in a lattice-like structure that reduces voids in the material and provides it with biaxial strength. This unique structure also delivers a very high flex life. When tested in an MIT Folding Endurance Tester, the flex life of calendared PTFE is four-times greater than conventional PTFE materials.

Unlike the skived process that is commonly used for PTFE manufacturing, the calendaring process produces uniform sheets of material with consistent physical properties. This gives calendared PTFE a renowned reputation for predictable performance and quality. The opposite is true for skived PTFE where variable properties lead to varying performance and reliability.

Continue reading Next Level PTFE Performance for Sanitary Applications

Gylon Epix Tackles Tough Tasks

Gylon Epix’s patterned material provides enhanced compressibility for better sealing

Gaskets are ubiquitous components in a processing plant. Every flange, equipment joint and connection point will have some form of gasket to prevent fluids from compromising (i.e., leaking from) a process system. However, effective sealing can pose challenges. A new form of polytetrafluoroethylene (PTFE) gasket, Gylon Epix, already has successfully addressed a number of persistent problems at plants.

Fig. 1: Gylon Epix gaskets feature a raised hexagonal pattern that provides better compressibility

The gasket, which is available in 3⁄32-in.-thick, 60-in. × 60-in. sheets, features a raised hexagonal pattern (Figure 1). It exhibits enhanced compressibility over both 1⁄16-in. and 1⁄8-in. traditional gaskets, seals easily when compressed by flanges and maintains assembled bolt torque better than comparable 1⁄8-in. PTFE gasket materials.

Successes with Gylon 3501-E and Gylon 3504

Trials at three early adopters of the new material underscore its value.

Fatty acid production. A German manufacturer of oleo-based chemicals, including fatty acids, glycerin, fatty alcohols and fatty esters used in consumer and personal health products, was experiencing problems sealing a 29.3-in. (745-mm) outside-diameter spiral heat exchanger. A gasket located atop the heat exchanger was exposed to polysaturated fatty acid and coolant at a continuous temperature of 428°F (220°C) and pressure of 87 psig (6 bar). J-type clamp bolts fasten the lid to the heat exchanger. Spiral heat exchangers present challenges because the gasket must seal across the entire face of the lid, requiring a gasket that will efficiently transmit the force from the bolts across its entire surface.

The traditional PTFE sheet gasket was allowing leakage across the exchanger’s spiral passes, decreasing efficiency. The gasket exhibited cuts from the spiral separation bars and required frequent changes that disrupted manufacturing and decreased plant productivity.

Fig 2. Disassembly after more than six months’ service revealed gasket was still in good condition.

Gylon Epix 3501-E  was installed in December 2017 and, after six months of testing, concluded it sealed well. Upon disassembly in July 2018, it was found to be in good condition, with no traces of cuts, discoloration, brittleness or sticking to the lid (Figure 2). A new gasket was installed in July 2018, which now has completed a successful one-year trial; the gasket continues to perform well.

Phosphate processing. New or refurbished equipment generally seals bolted connections well. As the equipment ages, gaskets and flange surfaces help seal gaps caused by corroded, worn, misaligned or repositioned equipment flanges. At a Mexican acid processor, Class 150, 8-in. raised-face flanges of the inlets and discharges of phosphoric and sulfuric acid transfer pumps had become worn and corroded. Temperatures were 104°F (40°C) and pressures 57 psig (4 bar). The 1⁄8-in.-thick glass-filled PTFE gaskets didn’t consistently provide a tight seal. So, the plant applied mastic filler to treat damaged flange surfaces as a stop-gap measure.

Gylon Epix 3504 was installed in December of 2017; it performed successfully without the need for flange treatments or special installation handling. Its enhanced compressibility fills the gap of imperfect flanges. It performed well until its removal in September of 2018 when the pump mechanically failed for a reason not related to the gasket. The acid processor is adding Gylon Epix to its approved materials list because it worked without the need for mastic, was flexible and easy to handle, and performed with zero leaks.

Terephthalic acid manufacturing. A southeastern U.S. producer of terphthalic acid (TPA) was experiencing leaks with traditional glass-filled PTFE sheet gaskets on a pressure vessel operating at 230°F and 60 psig that has a 60-in. × 10-in. rectangular gasket joint opening. Large rectangular joints can have uneven surfaces due to warpage of the cover. In July of 2018, Gylon Epix 3504 was installed and is still in service as of September 2019 and performing well. The company has accepted the product into its system and is re-ordering.


The original article can be found here and was written by Jim Grago, PE, a principal applications engineer for Garlock.

Gallagher Fluid Seals is an authorized distributor of Garlock. For questions about products or to see if Gylon Epix is the right fit for your application, contact our engineering department.

Raising the Gasket / Surface Profile in Aging Systems

Enhancing the surface profile can improve sealing capabilities, extending the functionality of aging piping systems in chemical plants.

There are many aged and aging process plants in operation today. In fact, many of the processing plants for power, chemicals, oil, etc., have been in service for more than 50 years. And while the piping itself may remain intact, their bolted flange gasket joints and connections are becoming misaligned, corroded and damaged due to repeated handling, chemical exposure and thermal cycling. This can lead to costly ruptures that may result in millions of dollars in damages, downtime, noncompliance penalties, irreparable environmental impact and litigation.

There is a solution that can extend the life of aging piping systems, preserving their functionality: raising the surface profile on polytetrafluoroethylene (PTFE) gaskets. This design modification can prevent leaks, spills and other releases in chemical processing plants by reducing and managing the contacted area of the gasket, thus achieving and maintaining a strong seal.

A Brief History of Gasket Technology

Traditionally, gasket thickness and sealability always involved a performance tradeoff. One could use 1/16-inch-thick (1.6 millimeter) gaskets when flanges were in good condition, achieving a tight seal with reduced creep.

However, when the flanges had bad or misaligned surfaces, the seal integrity was degraded.

In those instances when the flanges are in poor condition (or if the shape of the flange condition is unknown), one would choose a 1/8-inch-thick (3.2 mm) gasket. The reason? A user does not want to risk installing a thinner gasket and discover that it does not seal properly, which then requires a timely and costly uninstall and reinstall. However, the thicker gaskets do not seal as well as their 1/16-inch counterparts when placed under comparable load. Additionally, with the thicker gaskets, creep is higher, requiring re-torque.

To address the limitations of both gasket options, the ideal gasket should combine the creep resistance of a 1/16-inch gasket with the compressibility and conformability of a 1/8-inch gasket—easier said than done.

Historically, gaskets have not always been forgiving, easy to use or simple to remove. Yet technology has evolved, allowing sealing products to be engineered and designed to optimize the work that is put into them, delivering a tighter, more durable seal.

The approach is one that does not focus on the gasket thickness but rather its surface profile. The results produce gaskets that reduce leaks, spills and other releases from piping systems, including those of aging chemical plants.

gylon epix sheet
Gylon EPIX Sheet Material

Raising the Gasket Profile

The concept of using surface profiling to reduce area and increase stress is found in many products, such as running shoes and car tires. Reducing the contact area while maintaining a given amount of compressive force results in increased stress. In the case of shoes or tires, this stress provides traction. In the case of gaskets, traction or friction between a gasket and a flange face is critical to holding internal pressure. If the downward force created by the fasteners in a flange is evenly spread over a larger area, the created stress contributes to making a seal more effective. This approach enables the aging piping system to maximize its sealing potential.

Impact on Raising Gasket Profile

Surface profiling positively impacts gasket technology in five key areas: compressibility, pressure resistance, scalability, load retention and dimensional flexibility.

Compressibility

Compressibility is a critical functionality of gaskets, as it represents the ability of the gasket to conform to the surfaces that it seals. Adding raised features to the surface of a gasket directly impacts compressibility by reducing the contact area and increasing the resulting stress.

When flange surfaces are worn, pitted or scratched—such as those in aging piping systems in chemical plants—it can be cost prohibitive and nearly impossible to repair/replace the flange to a “good as new” condition. The more compressible the gasket, the better chance of producing an effective seal with the flanges. Continue reading Raising the Gasket / Surface Profile in Aging Systems

Custom Expansion Joints – Rubber

A flexible choice can adapt to permanent misalignment, preventing future damage.

Keeping aging facilities and equipment maintained is an ever-changing task that can jeopardize the goal of maximizing uptime. Years of thermal cycling, vibration or foundation settling can disorient piping or pumps. Piping engineers will use rubber expansion joints to account for these types of challenges in a rigid piping system. Permanent misalignment can set in after years of operation. The original-size expansion joint could no longer be the best fit when it comes time to replace.

Replacing a permanently misaligned expansion joint connection with the original part could lead to reduced service life and/or missed expectations of the new expansion joint. Determining the best way to accommodate this when it comes time to replace the existing expansion joint can have long-term effects on reliability. Since the original components may not fit in the newly disoriented flange connection, they are limited in their reliability.

Types of Customization & Benefits

Expansion joints are designed to withstand the pressure retention of rigid pipes, yet be flexible and absorb misalignment induced in these systems. However, there are limits to exactly how much flexibility can be absorbed before damage occurs. Using this flexibility to connect two misaligned pipe flanges will take away from how much movement can be absorbed during the actual operational period when the system is running.

Attempting to retrofit a standard-size expansion joint to connect a misaligned pipe connection can put excessive stress on the component and could lead to a shorter operational service life. For this reason, the Fluid Sealing Association (FSA) recommends no greater than ±1/8-inch misalignment of the pipe flanges during installation. Depending on the severity of misalignment, it can be advantageous to implement  custom expansion joints to minimize the stresses that cause these joints to fail or become damaged during installation.

Maintenance crews can also benefit by having a component that will fit precisely. Concerns for safety are present when attempting to put enormous pressure to compress, elongate or offset the joint so it will fit in place.

Face-to-Face Tailoring

Stress area stretched axially
Image 1. Stress area stretched axially during installation

Years of cycling, wear and other factors can contribute to the disorientation of a particular pipe connection. The length of an expansion joint, a dimension commonly referred to as face-to-face, bridges the gap between two parallel pipe flanges. A common industry problem is created when foundations settle and piping support structures transition lower than where it was originally constructed (Image 1). Expansion joints are designed to account for this, but choosing the correct replacement will make the difference between continued reliable service life or system failure.

Stretching an expansion joint to fit the changed flange connection often results in immediate damage that is only sometimes visual to the naked eye. A stress point on the outer cover of the expansion joint will usually become visible at the transition corner between the flat portion and the base of the arch in the form of a crack. The severity of cracking, elongation and settling will be aggravated when pressure in the pipeline is turned on.

Depending on nominal pipe size, industry standards will include standard face-to-face sizes of 6, 8, 10 or 12 inches, according to the FSA. When a standard 6-inch face-to-face joint is removed, the length between flanges could have been elongated to 7 inches or more. Many expansion joint consumers are not aware of the capability to build the expansion joint to the required nonstandard 7-inch face-to-face since it is not a standard offering. Building the replacement expansion joint to the nonstandard 7-inch face-to-face will eliminate any initial stress imposed on the joint.

picture of lateral expansion joint
Lateral offset expansion joint. and Angular offset expansion

Continue reading Custom Expansion Joints – Rubber

The Ideal PTFE Gasket for Tough Applications – GYLON EPIX

The search for the ideal Polytetrafluoroethylene (PTFE) gasket has been elusive. Competing applications and workplace variables have led to the creation of myriad solutions, yet none that has proven fully adaptable and appropriate for universal adoption.

Garlock Sealing Technologies considered this to be a critical yet entirely solvable shortcoming. And it is against this backdrop that in 2016, they set out to compile a comprehensive list of attributes for the ideal PTFE gasket — a wish list, as it were — in order to build a better gasket.

Working with a third-party survey development company, Garlock developed an exhaustive questionnaire that probed every aspect and functionality of PTFE gaskets, testing and adjusting the questions until they had a workable, finalized version.

Using this final questionnaire, Garlock conducted extensive interviews at 15 major chemical processor companies, speaking with 20 engineers responsible for process operations, projects, maintenance and reliability. The goal was simple: to discover the ideal characteristics and their relative importance that engineers sought in a PTFE gasket.

After several months of data collection, Garlock analyzed the feedback and noted the most popular responses:

  • 28% of respondents said that they struggled with how different gaskets required different compressive loads and how to ensure that those gaskets had been installed properly
  • 21% expressed frustration with the creep properties of PTFE gaskets
  • 21% desired a gasket that seals with less compressive load
  • 14% expressed frustration at the installation inconsistencies of their fitters
  • 14% expressed frustration with leaking, especially after a successful installation and start-up

From those answers, Garlock drew the following conclusions, representing the most desirable and essential PTFE gasket characteristics:

  • Seal: Seals easily
  • Installation and assembly: Forgiving of poor installation or assembly practices
  • Forgiving: Forgiving of poor flange conditions
  • Retention: Maintains a seal after installation
  • Flexible: Can be used in a broad range of services to avoid user confusion and reduce inventory

Introducing: GYLON EPIX

Garlock used this feedback in developing a next generation PTFE gasket — GYLON EPIX. Featuring a hexagonal surface profile, GYLON EPIX offers superior compressibility and sealing for use in chemical processing environments. Its enhanced surface profile performs as well or better than existing 1/16″ or 1/8″ gaskets, allowing end-users and distributors to consolidate inventory, lower the risk of using incorrect gasket thicknesses and reduce stocking costs.

GYLON EPIX checks off the most desirable gasket attributes:

  • Installation and assembly: Even distribution of the bolt load over the contacted area of the gasket during the assembly process
  • Retention: Retention of the bolt load administered at assembly
  • Seal: Efficient translation of bolt load to sealing performance
  • Forgiving: The ability to perform in imperfect flanges and installation conditions

GYLON EPIX with its raised, hexagonal profile allows it to perform the job of both traditional 1/16” and 1/8” gaskets. It accomplishes this by combining the bolt retention of the former with the forgiveness for bad flange conditions of the latter, a truly innovative feature for PTFE sheet gasketing. Continue reading The Ideal PTFE Gasket for Tough Applications – GYLON EPIX

Garlock Launches FLOOD-GARD Bearing Isolators for Fully Flooded Applications

FLOOD-GARD Offers Bearing Protection in Challenging Flooded Environments

Garlock has launched FLOOD-GARD Bearing Isolators for flooded applications. The patent-pending seal design provides bearing protection even in the most challenging flooded environments, extending the life of rotating equipment such as gearboxes, pumps, and motors.

“FLOOD-GARD™ allows Garlock to unlock value for our customers by taking industry leading bearing isolator technology, and advancing it even further, into a seal that excels in flooded conditions,” says Kevin Allison, Product Manager, KLOZURE®.

The latest addition to Garlock’s family of KLOZURE® Bearing Isolators, FLOOD-GARD™ is a revolutionary seal that combines improved safety and overall process efficiency with cost savings through extended equipment and bearing life. FLOOD-GARD’s Cam-Lock design provides excellent bore retention while allowing easy installation by hand, without the need for an arbor press. Other benefits include the ability to accommodate up to .015” of radial shaft misalignment and patented PTFE unitized construction that eliminates metal-to-metal contact, all while achieving an IP66 rating in most configurations — flanged, small cross section, step shaft and vertical.

FLOOD-GARD Benefits

  • Patented seal design provides bearing protection even in the most challenging flooded environments, extending the life of rotating equipment
  • Rugged, unitized construction for ease of installation
  • IP66 in most common design configurations
  • Available in standard and small cross section configurations
  • Substantially reduced installation time – NO ARBOR PRESS NEEDED
  • No metal-to-metal contact between stator and rotor
  • Handles up to .015″ of misalignment

FLOOD-GARD™ allows Garlock to unlock value for our customers by taking industry leading bearing isolator technology, and advancing it even further, into a seal that excels in flooded conditions.

FLOOD-GARD Design Parameters

  • Temperature: -22ºF (-30ºC) to 400ºF (204ºC)
  • Shaft to bore misalignment: ±0.015” (0.38 mm)
  • Axial motion to ±0.010” (0.25 mm)
  • Surface speed: to 3,000 FPM Max. (15.24 m/s)
  • Pressure: 7 psi intenal pressure

FLOOD-GARD Beta Sites

  • Gearboxes are common, but industries vary
  • Over 100,000 hours of runtime
  • Great success in all these industries

Beta Sites


For more information about Garlock products, or to learn more about the FLOOD-GARD, contact Gallagher Fluid Seals today.

Gallagher Fluid Seals is a preferred distributor of Garlock products and can help provide custom engineering solutions.