Category Archives: Oil & Gas

Degradable Materials Simplify Well Completions in Oil & Gas Extraction

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.

Original content can be found on Parker’s Website and was written by members of the O-Ring & Engineered Seals Division. Jacob Ballard – research and development engineer, Jason Fairbanks – market manager, and Nathaniel Sowder – business development engineer.


degradable materials for offshore drillingThe emergence of degradable and dissolvable materials is providing oilfield service companies an opportunity to increase efficiencies and cut costs in the oilfield by simplifying well completions. These materials replace their conventional metallic and polymeric counterparts in completion tools, but eventually break down and disperse when exposed to common completion fluids. This eliminates the need for well interventions to mill out or retrieve used tools. This can result in a reduction of drill time, a safer work environment, and monetary savings for the operator. Parker Hannifin produces dissolvable and degradable metal alloys, thermoplastics, and elastomeric materials that can enhance your well completions.

Degradable Elastomers

Parker O-Ring and Engineered Seals (OES) Division produces degradable elastomer formulations that can be used in frac plugs, liner wipers, and other sealing applications common in the completions segment. These elastomer formulas have tough physical properties and low compression set and are designed to replace materials such as Nitrile or HNBR in conventional tool designs. With proper design, tools using Parker degradable elastomer can withstand the high pressures (>8,000 psi) generated during hydraulic fracturing while still eventually deteriorating away, allowing well production without having to be drilled out. These degradable elastomers can be produced in a variety of desired forms such as O-rings, custom molded shapes, and packing elements. They can also be bonded to dissolvable metal alloys to produce completely degradable solutions. If needed, Parker offers a product engineering team to assist with the design of components and rapid prototyping services to help cut down on development timelines.

Degradable Thermoplastics

Parker Engineered Polymer Systems (EPS) Division manufactures engineered degradable Thermoplastic materials which can be used in many types of completion tools that traditionally use non-degradable elastomers. Parker EPS’s high-grade thermoplastic materials have increased physical properties over conventional elastomers making it ideal for both high pressure/high temperature and wear resistant applications. The increased physical properties of EPS thermoplastics provide enhanced resistance to extrusion, temperature and wear over most degradable non-metallics in the market. These unique thermoplastic materials may be manufactured in both homogenous as well as bonded components such as Packers, Parker back-up rings, Frac Plugs and liner wipers and are ideal for hot trouble well applications.

With a wide range of wellbore temperatures and completion fluids seen across the industry, selecting the right degradable compound can be complicated. Gallagher Fluid Seals, in coordination with Parker, can help assist in recommending the proper paramaters for using degradable elastomers.


Gallagher Fluid Seals is an authorized distributor of Parker. To learn more about how Gallagher Fluid Seals can help you, contact our engineering department at 1-800-822-4063

Parker’s Low Temperature FFKM Provides Critical Oil & Gas Sealing Solutions

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.

Original content can be found on Parker’s Website.


Oil & Gas Sealing Solutions with a Low Temperature FFKM

Technology advancements and new-to-world discoveries are constantly creating a new series of challenges for seal materials in the Oil and Gas industry. In today’s environments, seals are being pushed to perform in temperature, pressure and chemical extremes never before thought to be obtainable with rubber products. Application pressures exceeding 20,000 psi, service temperatures ranging from -40°F to upwards of 500°F, and exposure to some of the most aggressive media on the planet are placing immense amounts of stress on sealing elements. Parker’s FF400-80 compound has been formulated to provide a solution to all of these sealing challenges.

FF400-80 Compound – FFKM Product Features

  • Temperature range: -40° to 527°F
  • Best-in-Class low-temperature FFKM
  • Excellent compression set resistance
  • RGD resistant per ISO 23936-2 and TOTAL GS EP PVV 142
  • Sour service H2S resistant per ISO 23936-2
  • Maintained resilience at high pressures and low temperatures
  • Great for use in HTHP applications

Sounds great, but what’s the catch?

Continue reading Parker’s Low Temperature FFKM Provides Critical Oil & Gas Sealing Solutions

FFKMs Protect Components in Enhanced Oil Recovery

FFKMs, also known as perfluoroelastomers, were first developed in the 1960s for applications involving high temperatures and/or aggressive chemicals.  Perfluoroelastomers exhibit many properties similar to PTFE (polytetrafluoroethlyene, or Teflon®), and are considered inert in almost all solvents.  However, PTFE is a plastic, and when compressed, it will not recover to its original shape.  On the other hand, elastomers contain crosslinks, which act as springs to give the material resiliency and the ability to recover after a part has been compressed – this resistance to permanent compression gives the material the ability to maintain a seal over time. (To learn more about perfluoroelastomers, download our Introduction to Perfluoroelastomers White Paper).

The article below was recently published on FlowControlNetwork.com, and discusses how FFKMs are being used in oil & gas exploration, as production companies are increasingly operating in high-pressure, high-temperature (HPHT) downhole conditions.


HOW FFKMS PROTECT COMPONENTS IN ENHANCED OIL RECOVERY OPERATIONS

Companies are increasingly operating in high-pressure, high-temperature downhole conditions.
Enhanced oil recovery uses gas, steam or chemical injection to improve flow rate. All graphics courtesy of AGC

Improving technologies and methods to increase the recovery of oil from existing reservoirs is a global challenge. In the U.S., oil production at reservoirs can include three phases: primary, secondary and tertiary (or enhanced) recovery. The U.S. Department of Energy (DOE) estimates that primary recovery methods — which rely on the natural pressure of the reservoir or gravity to drive oil into the wellbore, combined with pumps to bring the oil to the surface — typically tap only 10 percent of a reservoir’s oil. Furthermore, secondary efforts to extend a field’s productive life — generally by injecting water or gas to displace oil and drive it to a production wellbore — still only push recovery totals to between 20 and 40 percent of the original oil in place. Clearly, much untapped oil and gas remains in existing wells.

Continue reading FFKMs Protect Components in Enhanced Oil Recovery