Tag Archives: EPIX

GYLON EPIX 3504 Helps Chemical Manufacturer

GYLON EPIX™ - 3504 EPXGYLON EPIX® is a family of gaskets that effectively seals a broader range of applications and is more forgiving during the installation process.  It allows the end user to save valuable turn-around time, reduce re-work, and lower costs, helping them to finish ahead of schedule and under budget.

GYLON EPIX® features a hexagonal surface profile that provides the torque retention and blowout resistance of a thin gasket and the conformability of a thicker gasket.  GYLON EPIX Style 3504 is a high performance, aluminosilicate microsphere filled PTFE sheet material designed for use in moderate concentrations of acids, and caustics, as well as hydrocarbons, refrigerants, and more.


picture of chemical plantINDUSTRY

Chemical

CUSTOMER

Chemical Manufacturer and Distributor

BACKGROUND

Loading stations are very critical in the chemical industry as flanges are disassembled and reassembled everyday.

CHALLENGES FACED

Due to the dangerous media being transported through the flanges there is a high risk of incidents and human harm, making it necessary for the gaskets to only be used once. For this reason the customer was looking to evaluate a solution that was more adaptable than the current gaskets being used.

OPERATING CONDITIONS

  • Temperature – Ambient outdoor temperature
  • Application – Flange connections at the load/unload station (4 stations). Flanges EN1092-1 Type 01, PN10-40, 316 TI stainless steel
  • Media – Sulfuric Acid (Oleum) with a concentration of 94%
  • Pressure – 2 bar/29 psig

SOLUTION AND BENEFITS

GYLON EPIX 3504 PTFE gasket with Aluminosilicate Microspheres is specifically designed for use in applications where many acids and caustics are present, making it the ideal solution in the loading stations. GYLON EPIX 3504 performed exceptionally during the 110 day evaulation allowing the customer to continue use with confidence.


The original case study can be found on Garlock’s website.

Gallagher is your source for all of your Garlock sealing needs.  If you have further questions regarding the GYLON EPIX™ 3504 EPX, or any other Garlock products, please do not hesitate to contact us. Our engineering department is always ready to help you design a sealing solution to your toughest application!

Gylon Epix Tackles Tough Tasks

Gylon Epix’s patterned material provides enhanced compressibility for better sealing

Gaskets are ubiquitous components in a processing plant. Every flange, equipment joint and connection point will have some form of gasket to prevent fluids from compromising (i.e., leaking from) a process system. However, effective sealing can pose challenges. A new form of polytetrafluoroethylene (PTFE) gasket, Gylon Epix, already has successfully addressed a number of persistent problems at plants.

Fig. 1: Gylon Epix gaskets feature a raised hexagonal pattern that provides better compressibility

The gasket, which is available in 3⁄32-in.-thick, 60-in. × 60-in. sheets, features a raised hexagonal pattern (Figure 1). It exhibits enhanced compressibility over both 1⁄16-in. and 1⁄8-in. traditional gaskets, seals easily when compressed by flanges and maintains assembled bolt torque better than comparable 1⁄8-in. PTFE gasket materials.

Successes with Gylon 3501-E and Gylon 3504

Trials at three early adopters of the new material underscore its value.

Fatty acid production. A German manufacturer of oleo-based chemicals, including fatty acids, glycerin, fatty alcohols and fatty esters used in consumer and personal health products, was experiencing problems sealing a 29.3-in. (745-mm) outside-diameter spiral heat exchanger. A gasket located atop the heat exchanger was exposed to polysaturated fatty acid and coolant at a continuous temperature of 428°F (220°C) and pressure of 87 psig (6 bar). J-type clamp bolts fasten the lid to the heat exchanger. Spiral heat exchangers present challenges because the gasket must seal across the entire face of the lid, requiring a gasket that will efficiently transmit the force from the bolts across its entire surface.

The traditional PTFE sheet gasket was allowing leakage across the exchanger’s spiral passes, decreasing efficiency. The gasket exhibited cuts from the spiral separation bars and required frequent changes that disrupted manufacturing and decreased plant productivity.

Fig 2. Disassembly after more than six months’ service revealed gasket was still in good condition.

Gylon Epix 3501-E  was installed in December 2017 and, after six months of testing, concluded it sealed well. Upon disassembly in July 2018, it was found to be in good condition, with no traces of cuts, discoloration, brittleness or sticking to the lid (Figure 2). A new gasket was installed in July 2018, which now has completed a successful one-year trial; the gasket continues to perform well.

Phosphate processing. New or refurbished equipment generally seals bolted connections well. As the equipment ages, gaskets and flange surfaces help seal gaps caused by corroded, worn, misaligned or repositioned equipment flanges. At a Mexican acid processor, Class 150, 8-in. raised-face flanges of the inlets and discharges of phosphoric and sulfuric acid transfer pumps had become worn and corroded. Temperatures were 104°F (40°C) and pressures 57 psig (4 bar). The 1⁄8-in.-thick glass-filled PTFE gaskets didn’t consistently provide a tight seal. So, the plant applied mastic filler to treat damaged flange surfaces as a stop-gap measure.

Gylon Epix 3504 was installed in December of 2017; it performed successfully without the need for flange treatments or special installation handling. Its enhanced compressibility fills the gap of imperfect flanges. It performed well until its removal in September of 2018 when the pump mechanically failed for a reason not related to the gasket. The acid processor is adding Gylon Epix to its approved materials list because it worked without the need for mastic, was flexible and easy to handle, and performed with zero leaks.

Terephthalic acid manufacturing. A southeastern U.S. producer of terphthalic acid (TPA) was experiencing leaks with traditional glass-filled PTFE sheet gaskets on a pressure vessel operating at 230°F and 60 psig that has a 60-in. × 10-in. rectangular gasket joint opening. Large rectangular joints can have uneven surfaces due to warpage of the cover. In July of 2018, Gylon Epix 3504 was installed and is still in service as of September 2019 and performing well. The company has accepted the product into its system and is re-ordering.


The original article can be found here and was written by Jim Grago, PE, a principal applications engineer for Garlock.

Gallagher Fluid Seals is an authorized distributor of Garlock. For questions about products or to see if Gylon Epix is the right fit for your application, contact our engineering department.

Raising the Gasket / Surface Profile in Aging Systems

Enhancing the surface profile can improve sealing capabilities, extending the functionality of aging piping systems in chemical plants.

There are many aged and aging process plants in operation today. In fact, many of the processing plants for power, chemicals, oil, etc., have been in service for more than 50 years. And while the piping itself may remain intact, their bolted flange gasket joints and connections are becoming misaligned, corroded and damaged due to repeated handling, chemical exposure and thermal cycling. This can lead to costly ruptures that may result in millions of dollars in damages, downtime, noncompliance penalties, irreparable environmental impact and litigation.

There is a solution that can extend the life of aging piping systems, preserving their functionality: raising the surface profile on polytetrafluoroethylene (PTFE) gaskets. This design modification can prevent leaks, spills and other releases in chemical processing plants by reducing and managing the contacted area of the gasket, thus achieving and maintaining a strong seal.

A Brief History of Gasket Technology

Traditionally, gasket thickness and sealability always involved a performance tradeoff. One could use 1/16-inch-thick (1.6 millimeter) gaskets when flanges were in good condition, achieving a tight seal with reduced creep.

However, when the flanges had bad or misaligned surfaces, the seal integrity was degraded.

In those instances when the flanges are in poor condition (or if the shape of the flange condition is unknown), one would choose a 1/8-inch-thick (3.2 mm) gasket. The reason? A user does not want to risk installing a thinner gasket and discover that it does not seal properly, which then requires a timely and costly uninstall and reinstall. However, the thicker gaskets do not seal as well as their 1/16-inch counterparts when placed under comparable load. Additionally, with the thicker gaskets, creep is higher, requiring re-torque.

To address the limitations of both gasket options, the ideal gasket should combine the creep resistance of a 1/16-inch gasket with the compressibility and conformability of a 1/8-inch gasket—easier said than done.

Historically, gaskets have not always been forgiving, easy to use or simple to remove. Yet technology has evolved, allowing sealing products to be engineered and designed to optimize the work that is put into them, delivering a tighter, more durable seal.

The approach is one that does not focus on the gasket thickness but rather its surface profile. The results produce gaskets that reduce leaks, spills and other releases from piping systems, including those of aging chemical plants.

gylon epix sheet
Gylon EPIX Sheet Material

Raising the Gasket Profile

The concept of using surface profiling to reduce area and increase stress is found in many products, such as running shoes and car tires. Reducing the contact area while maintaining a given amount of compressive force results in increased stress. In the case of shoes or tires, this stress provides traction. In the case of gaskets, traction or friction between a gasket and a flange face is critical to holding internal pressure. If the downward force created by the fasteners in a flange is evenly spread over a larger area, the created stress contributes to making a seal more effective. This approach enables the aging piping system to maximize its sealing potential.

Impact on Raising Gasket Profile

Surface profiling positively impacts gasket technology in five key areas: compressibility, pressure resistance, scalability, load retention and dimensional flexibility.

Compressibility

Compressibility is a critical functionality of gaskets, as it represents the ability of the gasket to conform to the surfaces that it seals. Adding raised features to the surface of a gasket directly impacts compressibility by reducing the contact area and increasing the resulting stress.

When flange surfaces are worn, pitted or scratched—such as those in aging piping systems in chemical plants—it can be cost prohibitive and nearly impossible to repair/replace the flange to a “good as new” condition. The more compressible the gasket, the better chance of producing an effective seal with the flanges. Continue reading Raising the Gasket / Surface Profile in Aging Systems

[VIDEO] Application Guidance for GYLON EPIX™

GYLON EPIX™ WebinarWe recently added the GYLON EPIX™ – The Next Generation in PTFE Gasketing webinar to our website.  The webinar discusses Garlock’s revolutionary new gasketing material, with its patented hexagonal surface, which concentrates gasket stress, providing improved compressibility and bolt load retention, improving sealability and blowout resistance.

Below is the third and final section of the webinar, which provides application guidance for GYLON EPIX™, calling out where it makes most sense to utilize this revolutionary new material.

[VIDEO] Features & Benefits of GYLON EPIX™

GYLON EPIX™We recently added the GYLON EPIX™ – The Next Generation in PTFE Gasketing webinar to our website.  The webinar discusses Garlock’s revolutionary new gasketing material, with its patented hexagonal surface, which concentrates gasket stress, providing improved compressibility and bolt load retention, improving sealability and blowout resistance.

Below is the second section of the webinar, which discusses the features and benefits of the GYLON EPIX™ material, and what differentiates it from any other gasketing material on the market today.

[VIDEO] Introduction to GYLON EPIX™

GYLON EPIX™ WebinarWe recently added the GYLON EPIX™ – The Next Generation in PTFE Gasketing webinar to our website.  The webinar discusses Garlock’s revolutionary new gasketing material. With its patented hexagonal surface, GYLON EPIX™ concentrates gasket stress, providing improved compressibility and bolt load retention, improving sealability and blowout resistance.

Below is the first section of the webinar, diving into what drove Garlock to create this new material, and how GYLON EPIX™ provides the benefits of both a 1/16″ and 1/18″ thick gasket in one, universal, 3/32″ thickness.

NEW! GYLON EPIX™ Webinar Now Available

GYLON EPIX™Gallagher recently added the GYLON EPIX™ Webinar to its website. This video is a recorded webinar discussing GYLON EPIX™ – The Next Generation in PTFE Gasketing.

This material is a newly developed family of PTFE gaskets. It is manufactured using a patented, profiled surface based on our proven Fawn  (Style 3500), Off-White (Style 3510), and Blue (Style 3504) GYLON® to create highly conformable materials for optimum sealing performance.

GYLON EPIX™ will provide superior functional performance by combining the traditional attributes of GYLON® with an innovative surface design. It offers a broader range of applications than traditional PTFE gaskets that are used in worn and pitted flanges. In addition, GYLON EPIX™ delivers the tight sealing and load retention properties of 1/16” (1.6mm) and the conformability of 1/8” (3.2mm). The hexagonal profile provides improved compressibility and recovery. The profiled surface reduces the contact area during initial compression to concentrate the compressive force of the flange for improved sealability.

Garlock GYLON EPIX™Designed for increased compressibility, it improves performance in misaligned flanges. The consolidation of two thicknesses to one reduces the need to inventory multiple thicknesses. Garlock is dedicated to providing real sealing solutions that meet real world sealing needs. With an improved design, color-coded materials, and single thickness, GYLON EPIX™ makes sealing easier.

To learn more, download the webinar today!

Case Study: Eliminating Epoxy Use on Flanges

GYLON EPIX™ is a family of gaskets that effectively seals a broader range of applications and is more forgiving during the installation process.  It allows the end user to save valuable turn-around time, reduce re-work, and lower costs, helping them to finish ahead of schedule and under budget.

GYLON EPIX™ features a hexagonal surface profile that provides the torque retention and blowout resistance of a thin gasket and the conformability of a thicker gasket.  GYLON EPIX™ Style 3504 EPX is a high performance, aluminosilicate microsphere filled PTFE sheet material designed for use in moderate concentrations of acids, and caustics, as well as hydrocarbons, refrigerants, and more.

EPIX™ - Phosphate Plant

INDUSTRY

Chemical

CUSTOMER

Phosphate Processor

Continue reading Case Study: Eliminating Epoxy Use on Flanges

GYLON EPIX™ Distributes Load Evenly

GYLON EPIX™ is a newly developed family of PTFE gaskets. It is manufactured using a patented, profiled surface based on our proven Fawn, Off-White, and Blue GYLON® to create highly conformable materials for optimum sealing performance.

THE EPIX™ DIFFERENCE

GYLON EPIX™ and a traditional full face gasket were installed in a 3”-150# flat face flange at 120 ft.lbs. with pressure sensitive film.  The film revealed that the traditional material saw heavier loading-near and around the bolts, and lighter loading at the points furthest from the bolts. The GYLON EPIX™ was able to distribute the load more evenly and prevent the low loading phenomenon.

GYLON EPIX™ with Pressure Sensitive Film

The pressure sensitive film was then analyzed with special software that translate the various shades of red into a full color spectrum that provides a better visualization of the stresses that were developed on each of the gaskets. Again, while the traditional gasket saw areas of lower stress (green and blue areas), the hexagonal pattern in the GYLON EPIX™ concentrated and distributed the stress more evenly across the entire gasket.

Continue reading GYLON EPIX™ Distributes Load Evenly

Case Study: Copper Mining Leakage Issues

GYLON EPIX™ 3504 EPXGYLON EPIX™ is a family of gaskets that effectively seals a broader range of applications and is more forgiving during the installation process.  It allows the end user to save valuable turn-around time, reduce re-work, and lower costs, helping them to finish ahead of schedule and under budget.

GYLON EPIX™ features a hexagonal surface profile that provides the torque retention and blowout resistance of a thin gasket and the conformability of a thicker gasket.  GYLON EPIX™ Style 3504 EPX is a high performance, aluminosilicate microsphere filled PTFE sheet material designed for use in moderate concentrations of acids, and caustics, as well as hydrocarbons, refrigerants, and more.


INDUSTRY

Mining

CUSTOMER

Copper Mine

BACKGROUND

Customer reported problems with continuous leaks that required ongoing maintenance and attention taking manpower and resources away from other critical operations for the plant.

Continue reading Case Study: Copper Mining Leakage Issues