Tag Archives: friction

What to Know, Avoid, and Consider When Planning Seals for Medical Devices

Seals are one of the most important components in many medical devices. While small in cost, seals for medical devices have a profound affect on the function of said device and the outcome of a medical procedure.

Engineered sealing solutions have advanced to meet the new medical device designs due both to new materials and to new processes for producing these seals. An understanding of the fundamentals of seal design, the tools available to assist in the manufacturing process and pitfalls to avoid will help in achieving a successful seal and medical device outcome.

Classifying the three basic seal designs

When approaching a new seal design, It is important to classify the seal based on its intended function. All seals fall into one of three distinct groups. While certain applications may combine more than one group, there is always one that is dominant. The three basic seal designs are:

Static — seal applications where there is no movement.
Reciprocating — seal applications where there is linear motion.
Rotary — seal applications where there is rotation.
Static seal applications are the most common and include those that prevent fluids and drugs from escaping into or out of a medical device. The seal design can range from basic O-rings to complex shapes. Static seals can be found in the broadest range of medical devices from pumps and blood separators to oxygen concentrators.

trocar design
New advances in trocar designs incorporating specialized seals allow multiple instruments to be inserted in the single trocar.

A reciprocating seal application with linear motion would include endoscopes that require trocar seals. These trocar seals are complex in design and allow the surgeon to insert and manipulate instruments to accomplish the medical procedure. These procedures range from relatively simple hernia repairs to the most difficult cardiac procedures. All of these minimally invasive surgeries employ endoscopes with seals that rely on seal stretch, durability and ability to retain shape during lengthy and arduous procedures. This particular seal application combines both reciprocating and rotary motion with the main function being linear motion.

A rotary seal application most commonly includes O-rings used to seal rotating shafts with the turning shaft passing through the inside dimension of the O-ring. Systems utilizing motors such as various types of scanning systems require rotary seals but there are many other non-motorized applications that also require rotary seals. The most important consideration in designing a rotary seal is the frictional heat buildup, with stretch, squeeze and application temperature limits also important.

Function of a particular seal design

What is the function of the seal? It is important to identify specifically if the design must seal a fluid and be impermeable to a particular fluid. Or will the seal transmit a fluid or gas, transmit energy, absorb energy and/or provide structural support of other components in device assembly. All of these factors and combinations need to be thoroughly examined and understood to arrive at successful seal design.

A seal’s operating environment

In what environment will a seal operate? Water, chemicals and solvents can cause shrinkage and deformation of a seal. It is important therefore to identify the short and long term effects of all environmental factors including oxygen, ozone, sunlight and alternating effects of wet/dry situations. Equally important are the effects of constant pressure or changing pressure cycle and dynamic stress causing potential seal deformation.

There are temperature limits in which a seal will function properly. Depending on the seal material and design, a rotary shaft seal generally would be limited to an operating temperature range between -30° F and +225°F. To further generalize, the ideal operating temperature for most seals is at room temperature.

Expected seal life – How long must the seal perform correctly?

Continue reading What to Know, Avoid, and Consider When Planning Seals for Medical Devices

How Material and Spring Type Affect Friction Calculation

Dynamic Sealing Applications

This article will discuss how we understand and control friction in dynamic sealing applications.

It’s easy to stop a leak in a system by just welding it shut. But when you create a dynamic application, you generally have a limited amount of power to move the device you’re sealing.

Friction is a force that must be overcome in all moving pieces. Controlling friction allows us to make efficient equipment that can have a long wear life and move with a limited amount of force.

There are many factors that drive friction up or down in a dynamic application. Although this blog will focus on shaft seals, the same considerations apply to piston or face seals.

Below we’ll cover the following factors and how they affect the friction calculation in our seals:

  1. Shaft material, hardness, and finish.
  2. If the system will operate when lubricated or dry.
  3. The system pressure or vacuum.
  4. System operating temperature
  5. Seal material and the types of fillers.

canted flange with hardware

Seal Substrate

As a seal supplier, we usually like shaft materials to be hardened steel with surface finishes that are highly effective. Hardness above 50 Rc usually gives long wear life.

Having a good finish of 8 Ra. will insure long seal life and carry lubrication. However, depending on the application, there are times when a super finish of 2 or 3 Ra is justified.

Depending on shaft loading, there are many choices of surface finish that can reduce friction and improve the life of the seal. Understanding the bearing load under the seal helps to understand what finish is required to withstand the operating conditions.

There are some finishes that are detrimental to seal life. An example is a heavy chrome surface that looks sturdy, but usually can’t be ground smooth and is left with large peaks or valleys. Thin, dense chrome is often the opposite, giving good seal life if applied correctly. The engineers at Eclipse Engineering are prepared to make recommendations on hardness and finish. Continue reading How Material and Spring Type Affect Friction Calculation