Tag Archives: o-ring

Engineered Materials and Sealing Solutions for Flow Batteries

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.
Original content can be found on Parker’s Blog.


Sealing can often be a frustrating challenge when dealing  with flow batteries. Determining what materials are compatible with certain chemistries or developing a profile that provides optimal sealing under available compression can be a time-consuming task for those outside the sealing industry. A trial and error approach can have a significant overall cost impact through multiple prototype iterations, prolonged testing, and ultimately, delaying product commercialization.

Specialized support

Parker’s design and material engineers can provide support to your team in the critical, early stages of product development. With hundreds of engineered elastomeric materials to choose from, our team can identify and recommend a compound that works with your specific electrolytes or other fluids. With the exceptionally long lifetime requirements of flow batteries, our homogeneous rubber provides the elasticity needed to handle the many charge-discharge cycles the battery will see in its life.

Continue reading Engineered Materials and Sealing Solutions for Flow Batteries

TetraSeals: Alternate Sealing Solution

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.
Original content can be found on Parker’s Blog.


TetraSeal: An Alternate Sealing Solution When an O-Ring Isn’t Working

Parker TetraSeals

Our applications engineering team takes more than a few calls each month where the O-ring is leaking, either immediately or after just a short time in service. Once we drill down to the details, we learn the failure mode is an improperly sized groove and O-ring. It isn’t all that uncommon for a groove to be cut in a flange and a novice designer learns the hard way that standard O-rings cannot fit in just any groove geometry. For hardware that has already been machined, frustration ensues as the caller learns the O-ring solution requires tooling. Tooling can have a lead time of at least a month to cut and can cost thousands of dollars. Parker offers a TetraSeal® solution, which often does not require tooling and can be made of many of the same materials used for O-rings.

Benefits of TetraSeals

The TetraSeal is a circular precision-cut seal with a square cross-section. Unlike O-rings which require a unique mold for each material family and size, TetraSeals are extruded, cured and machine cut to the target thickness. Our manufacturing facilities in both Spartanburg, South Carolina and Goshen, Indiana are tooled in a variety of interchangeable extrusion dies, making this type of seal an easily sourced seal solution without the lead time and cost of a custom molded O-ring.

Continue reading TetraSeals: Alternate Sealing Solution

Innovative Solutions Improving Seal Retention

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.
Original content can be found on Parker’s Blog.


Seal Retention - Pre-applied PSA

We receive many requests from customers asking for recommendations on how to retain seals in an application. One of the most popular “quick fixes” is to apply liberal amounts of adhesive to a standard O-ring type product without respect to groove shape or sealing function. However, Parker OES provides a wide array of sealing technologies, offering innovative solutions to accommodate the challenging and vast sealing needs of our customers.

Replacing RTV with Pre-Applied PSA

A customer had been using a standard O-ring product on an outdoor electronic device. This part was sealing the external edge of the enclosure and meant to keep out water and dust. The enclosure was plastic injection molded so this extreme edge had irregular geometry to accommodate the molding process. The original proposal was to shove O-ring cord in place and adhere it down with RTV (Room Temperature Vulcanization) so that it did not fall out during assembly. This left a rust colored stripe exposed on a  consumer device due to fitment issues. Parker’s proposal was to replace the O-ring cord with a custom hollow extrusion that fit the available space and allowed complete closure, thus not exposing the seal to be visible. The RTV process was replaced with PSA (Pressure Sensitive Adhesive) that was preassembled to the seal and allowed for quick and clean placement during assembly and retention for any maintenance needed.

Innovative Solutions Improving Seal Retention, Hollow Teardrop Profile Seals, O-Ring & Engineered Seals Division

Continue reading Innovative Solutions Improving Seal Retention

NEW! Elastomer Failure Modes – Part 3

Failure ModesGallagher recently published its Failure Modes of Elastomers in the Semiconductor Industry White Paper, now available for download on our site.  This white paper discusses common issues that occur with elastomer seals in the semiconductor industry. The excerpt below is the third section of our new white paper, discussing O-Ring Stretch, Chemical Attack, Plasma Cracking, and Permeation.  To download the entire white paper, visit our Resources Page, or click on the image to the right.


Failure Modes of Elastomers in the Semiconductor Industry

Failure ModesHigh performance elastomers are found in many applications in the semiconductor industry (see paper titled Perfluoroelastomers in the Semiconductor Industry). Though perfluoroelastomer (FFKM) seals are formulated to meet the highest performance requirements of integrated circuit (chip) manufacturers, even these elastomers can’t solve every sealing application nor will they last forever in service. Additionally, end users need to understand subtle performance differences between perfluoroelastomers in the same product line. For example, one product may be better at minimizing particle generation while another may be better for high temperature services.

Continue reading NEW! Elastomer Failure Modes – Part 3

How To Install an O-Ring in any Application

O-Rings continue to be the most widely utilized sealing product.  While the ‘Donut’ shaped profile has by and large been kept intact since their inception, continued elastomeric development has pushed o-ring temperature and chemical compatibility to limits unimaginable several decades ago.

Typically, O-Rings fail due to adverse effects of a number of factors, from improper installation and lubrication to incorrect size and design.  The collection of videos below will help you minimize installation errors that may lead to failure (be sure to bookmark this page for future reference).


How To Install an O-Ring – Standard Male Gland

Continue reading How To Install an O-Ring in any Application

Continuous Molding Enables Production of Large-Size Elastomer Seals

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.
Original content can be found on Parker’s Blog.


Continuous Molding - Vulcanization of Large Size O-RingsPrecision O-rings are manufactured by vulcanization in a closed mold using compression or injection molding. This makes it possible to produce O-rings in relatively small manufacturing tolerances and with good surface quality according to ISO 3601-1 and ISO 3601-3. Due to defined vulcanization parameters, precision O-rings exhibit consistently high mechanical properties across the entire circumference. This high quality level is an indispensable prerequisite for achieving consistently good sealing effects over a long period of time.

However, up to now, this production technology has been regarded in the sealing industry as not being economically feasible for O-rings in very large dimensions due to the enormous work and related costs involved in making extra-large molds. In addition, such large molds are extremely difficult to handle and therefore cannot be accomplished by many seal manufacturers.

Advantages of Continuous Vulcanization

The innovative manufacturing technology of continuous vulcanization used by Parker Prädifa, which does not involve failure-prone joints, enables the cost-efficient production of precision-quality O-rings with high mechanical load resistance in nearly any desired diameter. The technical properties of continuously vulcanized O-rings are comparable with those of O-rings produced by conventional compression molding. As a result of being molded, these XXL O-rings are quality products for challenging applications.

The surface qualities and tolerances correspond to those in ISO 3601:2012. However, this standard only covers cord thicknesses of up to 8.4 mm. To ensure that customers receive reliable and consistently high-quality O-rings where cord thickness is >8.4 mm, Parker Prädifa has developed an in-house standard based on ISO 3601:2012.

Customer-specific geometries for static and dynamic applications
In addition to precision-quality XXL O-rings, Parker Prädifa offers the development and production of customer-specific geometries in large diameters. A wide range of materials is available according to the application requirements.


Case study: Sealing solution for centrifuge (pharmaceutical industry)

Continuous Molding - Vulcanization of Large Size O-Rings

The challenge >> In the large-scale industrial production of semi-synthetic antibiotics, up to 500,000 liters of antibiotics are produced per batch. For such large-scale production to be economically feasible equipment of corresponding dimensions is required. In addition to large fermenters with diameters of several meters in which the biotech antibiotic is bred, centrifuges of similar dimensions are utilized to separate the antibiotic from process agents. Leakage must be prevented at all cost for safety and economic reasons. A leaking centrifuge might contaminate the antibiotics, resulting in high financial losses or, worse yet, in health and environmental hazards.

The solution >> Parker Prädifa was involved in the project at an early stage to develop a reliable sealing solution. The utilization of continuously vulcanized, i.e. jointless precision O-rings ensures the requisite reliability. Besides the seal design, the compound properties, particularly temperature and media resistance, play a key role. In addition to permanent temperatures of 250 °C, the seal has to withstand the aggressive media used in antibiotics production. The Parofluor® (FFKM) compound V8920 was selected as the suitable material for this application.


Case study: Lip seal ring for lithography system (semiconductor industry)

Continuous Molding - Vulcanization of Large Size O-Rings

The challenge >> The development of a new lithography system for semiconductor manufacturing posed the challenge of sealing two halves of a housing. Due to the tolerance situation in producing the respective housing halves, there was a risk of a gap of up to 0.5 mm occurring between the two halves in the assembled housing.

The solution >> In sealing technology, the gap dimensions to be bridged are typically between 0.05 mm and 0.25 mm. As larger gap dimensions available for sealing in the groove in this application could not be reliably sealed, or only by entailing a higher risk of leakage, with a solid seal such as an O-ring, a conventional O-ring sealing solution was not selected here, but a profile seal featuring a lip design. This seal was developed using Finite Element Analysis (FEA) to ensure reliable sealing of large gaps and tolerance variations in the seal groove between the two halves of the housing. In addition, the shape of the seal prevents twisting during installation and reduces the required assembly forces.
In the selection of the seal compound, high purity requirements had to be considered. Due to specific post-curing processes, the FKM compound V0747 with low outgassing properties achieves outstanding results.

More information
EMG Report 07/2017, Page 22
Brochure: XXL Size Seals and Molded Parts


This article was contributed by Stefan Reichle, Market Unit Manager Indsutry, Engineered Materials Group Europe, Prädifa Technology Division.

Source: http://blog.parker.com/continuous-molding-enables-production-of-large-size-elastomer-seals-in-precision-quality

3 Guidelines to Ensure Proper O-Ring Installation

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.
Original content can be found on Parker’s Blog.


Incorrect O-ring installation can lead to assembly damage causing leakage during the first pressure test. If the system does not pressurize properly, the entire piece of equipment should be disassembled and seals must be replaced. Depending on when this test occurs, multiple manufacturing steps could be in between the seal installation and the first step where leakage can be identified. If O-ring damage happens with high frequency, you could be wasting time and money on seal replacement. Luckily, there are some easy steps that can be followed to help prevent this from occurring. Parker’s recommended guidelines for installation include always using lubrication, good gland design, and ensuring correct sizing.

Lubrication Makes Installation Easier

O-Ring Installation - Parker O-LubeUsing lubrication is an essential facet of proper installation. Lubrication reduces surface friction between the O-ring and mating surfaces, allowing the O-ring to seat in the groove with very little difficulty. In male and female radial seals, lubrication will reduce installation force and create a smooth transition as the piston is inserted in the bore.

Choosing the proper lubricant requires careful consideration of your system. You must ensure the lubricant choice is compatible with the material being used, suitable for the temperature range of the application, compatible with the system fluids, capable of producing a high surface tension film, and does not clog system filters.

Continue reading 3 Guidelines to Ensure Proper O-Ring Installation

VIDEO: How to Lubricate an O-Ring

Lubrication of O-rings is extremely important. The greatest benefit of using a lubricant is typically obtained during installation.

Parker O-Lube - Lubricant for O-RingsUsing a lubricant is going to decrease the surface friction of the O-ring helping to prevent abrasion, pinching or cutting of the O-ring during installation.  Lubricating an O-ring can also help to seat the O-ring properly into the application, as well as aid and speed up automated assembly processes.

The proper method of applying a lubricant to an O-ring always seems to be an area of concern for many of our customers and there are many methods used in the marketplace. One is to apply the lubricant to the O-ring using your fingers, your hand or a brush. Another is to dip the O-ring into a container of the lubricant. A third method commonly used is to dispense the O-ring lubricant into the seal packaging and use what we call the “shake and bake” method.

The common goal of all of these different lubrication methods is to have a thin uniform film applied to the entire surface of the O-ring when completed. This will ease installation and provide best friction reduction.


Gallagher Fluid Seals is a Parker Authorized Distributor, with thousands of o-rings stocked at all times.  If you have any questions about o-rings, material compatibility, failure modes, etc, please don’t hesitate to contact us.

Using an O-Ring in Non-Circular Grooves

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.  Original content can be found on Parker’s Blog.


O-Ring Racetrack Groove

Can O-rings be used in rectangular or non-circular groove patterns? This question comes up weekly, and the answer is a resounding “Yes!” however there are definite guidelines we want to follow. A non-circular face seal footprint might also be called a racetrack groove, a wandering groove or a custom plan view. When using an O-ring, the main design consideration is the corner or smallest radius (shown “r” in diagram). The inside radius should be at least three times the O-ring cross sectional diameter. In a perfect world, six times greater is even better. What we want to avoid is over-stressing the O-ring around the bend, or causing a corner crease which increases likelihood of corner leakage. Designing the radius at six times the cross section will minimize the bending stress, resulting in increased service life.

Continue reading Using an O-Ring in Non-Circular Grooves

Static O-Ring Seal – Face Type Seal

The face seal design chart below explains the hardware dimensions to use for an O-ring seal when the groove is cut into a flat surface.

O-Ring Seal: Face Type Seals

Systems Which Contain Internal Pressure

For designing systems which contain internal pressure, like the example below, the groove’s outside diameter (OD) is primary, and the groove’s width then determines the inside diameter.

O-Ring Seal: Face Seal w/Internal Pressure     O-Ring Seal: Face Seal w/Internal Pressure

Continue reading Static O-Ring Seal – Face Type Seal