Tag Archives: Parker

Water Regulations and NSF 61 Compliant Elastomers

Replacing Aging Water Infrastructure With NSF Compliant Materials

There are over 155,000 public water systems in the United States and more than 286 million Americans who rely on community water systems daily.  Since most of the infrastructure was built between the early 1900’s and 1960 using outdated technology/products and capabilities, nearly everything is approaching the natural end of it’s lifespan.

Some estimates put the repairs and replacement of thePicture of NSF Compliant Gaskets infrastructure between $250B and $500B over the next 20-30 years. Several applications will need to be updated or fully replaced for the safety of consumers and quality of delivery, including:

  • Joining and sealing materials
  • Mechanical devices
  • Pipes or related products
  • Process media
  • Plumbing devices
  • Non-metallic potable water materials
  • Hydrants
  • and Public drinking water distribution (tanks and reservoirs, maters, individual components)

Joining and Sealing Materials

When these systems were being constructed and assembled decades ago, there were limited regulations and requirements that needed to be met. Gaskets, at least the traditional ones, were often made in two different ways: (1) Red Rubber (ASTM D1330 Grade 1 &2) with compressed non-asbestos or (2) cloth-inserted rubber with compressed asbestos.

However, today’s acceptable gasket requirements for the potable water industry differ greatly from those in the past. Gaskets have strict guidelines to abide by and must be:

  • Chemically resistant
  • NSF compliant
  • Food grade compliant
  • Electrically isolating

Because of the need for health and safety, the National Sanitation Foundation (NSF) was created in order to establish minimum requirements for the control of potential adverse human health effects from products that contact drinking water. In addition to gaskets, the NSF covers a variety of products and parts relevant to the water industry, including: pipes, hoses, fittings, cements, coatings, gaskets, adhesives, lubricants, media, water meters, valves, filters, faucets, fountains, and more.

So you might ask – why does the NSF require different materials and regulations for gaskets compared to years ago?

First things first – leaks are a major issue with the aging infrastructure. Improperly placed gaskets & seals or faulty products can cause leaks. This in turn could pose health risks to people drinking potable water or using products processed with potable water.

Additionally, the treatment process and chemicals utilized are Picture of NSF 61 Compliant Sealsdifferent from previous “standard” products. For example, research and testing over many years has concluded that traditional gaskets, which were used many years ago, could pose a safety threat to those drinking water processed with specific materials. This led to updated regulations for NSF 61’s drinking water system components.

Lastly, engineered sealing solutions are more important than ever. There’s a wide variety of custom engineered water systems throughout the U.S. – climate, geographic terrain, and the needs of the community are all reasons for why water infrastructure is so unique. Because of this, custom gaskets, seals, and other products are needed to supplement those systems.

Luckily there are many companies dedicated to providing the highest quality NSF 61 products. These trusted brands have proven materials to count-on when replacing or repairing water infrastructure:

Garlock’s NSF 61 Family of products

Parker’s NSF compliant products

Freudenberg’s new generation of NSF products

For more information on how Gallagher Fluid Seals’s engineers can help you with a custom solution, call us at 800.822.4063

Case Study: Self-Lubricated Polyisoprene for Medical Septum Applications

Case Study: Self-Lubricated Polyisoprene for Medical Septum Applications

The project

Develop a system that reduces the needle drag and piercing resistance of the septum and injection site materials to increase product performance.

The solution

Chemists developed a family of self-lubricated polyisoprene materials that have been manufactured with a proprietary lubricant system and show a minimal reduction of physical and mechanical properties.

By Saman Nanayakkara and Shu Peng

Due to its availability as an ISO 10993 medical grade compound, polyisoprene rubber, which has a unique set of combined mechanical and chemical properties, has been widely used in medical device applications. The material is ideal for septums and injection sites for medical fluid transfer applications. Medical grade polyisoprene compounds have high tear strength and high elastic resilience. These characteristics can provide the desired resealability properties of the septum or injection site after piercing one or more times with a needle.

Medical device manufacturers have long sought a reduction in needle drag or piercing resistance of septum and injection site materials to increase product performance. Post molding surface treatment to modify coefficient of friction is the conventional approach taken to reduce tackiness for improved part handling. This process, however, is a surface treatment for reducing surface friction and does not effectively reduce needle drag, which is caused largely by friction within the septum and injection site materials. Furthermore, this secondary surface treatment adds additional cost to the component.

Table of mechanical property comparisons

Continue reading Case Study: Self-Lubricated Polyisoprene for Medical Septum Applications

The Basics of Microwave Absorber Materials

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.
Original content can be found on Parker’s Blog.


You’ve probably heard a bit about microwave absorbers and how they are used to reduce or absorb the energy that is present in a microwave. But what are they exactly? And how do they work? Go ahead, read on.

What are microwave absorbers?Picture of Microwave Absorber

Simply put, microwave absorbers are special materials, often elastomer or rubber based, which are designed to offer a user-friendly approach to the reduction of unwanted electromagnetic radiation from electronic equipment. They also work well to minimize cavity to cavity cross-coupling, and microwave cavity resonances. When comprised of a silicone elastomer matrix with ferrous filler material, microwave absorbers provide RF absorption performance over a broadband frequency range from 500 MHz to 18 GHz.

Continue reading The Basics of Microwave Absorber Materials

Engineered Materials and Sealing Solutions for Flow Batteries

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.
Original content can be found on Parker’s Blog.


Sealing can often be a frustrating challenge when dealing  with flow batteries. Determining what materials are compatible with certain chemistries or developing a profile that provides optimal sealing under available compression can be a time-consuming task for those outside the sealing industry. A trial and error approach can have a significant overall cost impact through multiple prototype iterations, prolonged testing, and ultimately, delaying product commercialization.

Specialized support

Parker’s design and material engineers can provide support to your team in the critical, early stages of product development. With hundreds of engineered elastomeric materials to choose from, our team can identify and recommend a compound that works with your specific electrolytes or other fluids. With the exceptionally long lifetime requirements of flow batteries, our homogeneous rubber provides the elasticity needed to handle the many charge-discharge cycles the battery will see in its life.

Continue reading Engineered Materials and Sealing Solutions for Flow Batteries

The Difference Between Thermal Conductivity and Thermal Impedance

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.
Original content can be found on Parker’s Blog.


The Difference Between Thermal Conductivity and Thermal Impedance

Thermal Interface Materials (TIMs) are useful for thermal management in electronic components, as they enhance heat transfer from a heat-generating component to a heat dissipater, or heat sink. One important aspect when selecting a TIM for your application is knowing the material’s ability to transfer heat, which is often given by way of thermal conductivityThermal_Montage and/or thermal impedance.

Across the industry, manufacturers often publish thermal conductivity in units of Watts / meter-Kelvin as well as thermal impedance in units of °C – inches2 / Watt on their datasheets. So, what is the difference between these two, and how should you consider them when selecting a TIM?

Thermal conductivity is a material property and describes the ability of the given material to conduct heat. Therefore, when a material’s thermal conductivity is high, the material is a better thermal conductor. This property is independent of material size, shape or orientation in a homogeneous material, and because of this, thermal conductivity is an idealized value.

To understand thermal impedance, we must first understand thermal resistance and thermal contact resistance.

Continue reading The Difference Between Thermal Conductivity and Thermal Impedance

Theme Park Thrills Owe Much to Hydraulics and Accumulators

Article re-posted with permission from Parker Hannifin Hydraulics Team.
Original content can be found on Parker’s Blog.


AccumulatorsMost people enjoy theme parks as a place to get away from work, but for those in the hydraulics industry, they are a place to demonstrate their expertise. Behind many of the rides that make your stomach drop or your eyes blink in amazement, Parker’s accumulators are picking up the stresses and enhancing the performances of hydraulic technology.

Behind the scenes, there is complex machinery that must run precisely and smoothly to ensure safe and reliable operation. Whether you are splashing through water, sailing above the tree lines, or being wowed by animations and simulations, powerful equipment that depends on the science and engineering of hydraulics is enriching your activities.  And, many of these large, powerful hydraulic systems rely on accumulators; hidden from the public view, but critical in their roles.

The Role of Accumulators

Typically, accumulators installed in hydraulic systems store energy to either provide an extra boost of power or absorb energy to smooth out pulsations. One of the world’s largest manufacturer of accumulators is Parker’s Accumulator and Cooler Division. According to Jeff Sage, product sales manager, the Parker accumulators used in theme parks are gas-charged and are either bladder accumulators or piston accumulators. Parker manufactures both types and has the engineering expertise to recommend which kind best fits the requirements of a particular ride.

Continue reading Theme Park Thrills Owe Much to Hydraulics and Accumulators

VA179: Industry Leading High Temperature FKM

High Temperature FKM - VA179The O-Ring & Engineered Seals Division of Parker Hannifin Corporation, the global leader in motion and control technologies, recently announced the launch of VA179, a new extreme high temperature fluorocarbon (FKM) compound. VA179 is an innovative, 70 durometer rubber seal material providing increased high temperature limits while maintaining chemical resistance and low temperature sealing consistent with standard FKMs.

VA179 consists of a breakthrough rubber technology increasing the FKM continuous high temperature limit an additional 20°C (68ºF) over standard FKM materials on the market today. This provides a new industry sealing solution to long-term compression set issues for customers using traditional fluorocarbons and silicones.

“In markets such as aerospace, automotive, and heavy-duty, we are frequently challenged to expand the temperature capabilities of our rubber compounds,” says Nathaniel Sowder, aerospace, military and chemical processing business development engineer, O-Ring & Engineered Seals Division, “With the launch of VA179, we now have a solution that will reach higher temperatures without sacrificing the low temperature and chemical resistance attributes that make standard FKM such a popular choice.”

Continue reading VA179: Industry Leading High Temperature FKM

Conductive Plastics for Enclosures

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.
Original content can be found on Parker’s Blog.


Best Conductive Plastics: Five Things to Look For

Conductive Plastics

Can electrically conductive plastics really replace traditional metal electronics enclosures? The answer is a resounding yes! There are very effective electrically conductive plastics available today that provide excellent electromechanical properties that help shield portable electronics from the electromagnetic interference (EMI) noise that is proliferating our daily life. Smart phones, Bluetooth, Wi-Fi, radio, even your television are all susceptible to EMI. So here are the key points you may want to consider when evaluating electrically conductive plastics for your application:

#1: Shielding Effectiveness

Every day we encounter EMI, and sometimes it happens at the most inopportune time. Maybe you’ve been put on hold for an hour and just when the customer service agent gets back to you, your cell phone drops the signal. Or perhaps you’re blasting the car radio listening to your favorite song, and just when the chorus comes on, static noise drowns out the tunes as you drive under high tension power lines. These are all examples of EMI interfering with our daily life, and electrically conductive plastics can help shield our portable devices from these interruptions.

Continue reading Conductive Plastics for Enclosures

80% Reduction in Exhaust Leakage with Air Duct Seal

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.
Original content can be found on Parker’s Blog.


Reduce Exhaust Leakage in Heavy Duty Engines by 80 Percent with an Air Duct Seal

Exhaust Leakage ReductionIncreased emission restrictions are requiring engine manufacturers to conform to Euro 6 and Tier IV regulations to reduce exhaust leakage 80% or more. In order to achieve these new standards, engines with extreme temperatures coupled with a high amount of vibrational movement, need to have highly engineered sealing solutions. Applications with predetermined mating components cannot always be changed, so the need for a sealing solution with a similar coefficient of thermal expansion is needed.

What is the problem in existing exhaust applications?

Most heavy duty diesel engines can reach exhaust gas temperatures upwards of 1292°F(700°C) while subjected to constant vibrations. These engine vibrations can cause havoc when a seal needs to be maintained on the exhaust line. Vibrations from the engine cause rotation, cavity offsets, pivoting, and reciprocation which become difficult to seal against. Movement, pressure cycling and thermal cycling require an engineered solution to maintain a seal under extreme application conditions. With the use of custom engineering and advanced analysis techniques, Parker is able to create custom solutions for our customers’ most difficult applications.

Continue reading 80% Reduction in Exhaust Leakage with Air Duct Seal

Parker ULTRA® FFKM for Semiconductor Applications

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.
Original content can be found on Parker’s Blog.


Semiconductor FFKM Offers Low Particle Generation AND Extreme Etch Resistance

Semiconductor Manufacturing - FF302In the world of semiconductor manufacturing, performance requirements are driving circuit sizes smaller and smaller, causing increased sensitivity to wafer defects. In parallel, the number of manufacturing steps has also increased driving a need for improved tool utilization and leaving more opportunity for these defects to be introduced. Identifying and eliminating the sources of defects is a tedious but necessary process to improve wafer yield.

What impact does seal contamination make?

One very distinct source of defects are the seals within a fab’s tool. Plasmas involved in both deposition, etch and cleaning processes utilize aggressive chemistries that put even high-functioning perfluorinated sealing compounds to the test. Much room for improvement has been left in this industry with many seal materials still posing significant threats to defectivity or downtime despite being designed for low particle generation or etch resistance.

How can Parker ULTRA change the industry?

Parker’s UltraTM FF302 Perfluorelastomer has proven success in CVD and etch applications, putting this material at the top of its class.  Typically, seal materials for semiconductor applications are optimized for low particulation or extreme etch resistance, however, Ultra FF302 provides both attributes in one material.  Laboratory testing shows Ultra FF302 has lower erosion in aggressive plasma chemistries even when compared to today’s leading elastomeric materials (Figure 1 below shows comparison erosion levels of various etch resistant perfluoroelastmers after exposure to Oplasma).

Continue reading Parker ULTRA® FFKM for Semiconductor Applications