Tag Archives: spring energized seal

The Manufacturing Challenges of Tiny Spring Energized Seals

tiny spring energized sealEclipse Engineering has in-house capabilities to manufacture seals up to 55 inches in diameter, and over 100 inches through production partners.

While seals with huge diameters certainly grant their own significant levels of intricacy, here we’ll look at the other end of the spectrum: the micro-sized seals.

We won’t just look at a simple seal ring, but an inherently more complicated and geometrically detailed spring energized seal. As we’ll see, very small diameters make multiple manufacturing aspects more involved and challenging.

The Client’s Issue

A sealing solution in a customer’s epoxy dispensing equipment. They needed an effective seal for the reciprocating rod responsible for the flow-control and metering of the epoxy while being dispensed.

Operating Conditions:

  • Reciprocating Rod Seal
  • Epoxy Dispensing Head
  • Rod Diameter: 1.2mm [0.047”]
  • Stroke Length: 6mm [0.236”]
  • Cycle Rate: 15 per min
  • Media: Epoxy
  • Operating Pressure: 1,500 PSI
  • Temperature: 70° to 150°F

In general terms, most viscous media sealing solutions have three things in common:

  1. A variant of UHMW for the seal jacket,
  2. heavy spring loading, and
  3. multiple point contacts with increased interference.

In most cases, multiple nested V-Springs are incorporated to provide optimal load and energize the compound contact points on the seal. With this formula, we’ve had great success sealing media like epoxy, urethane, silicones and acrylics.

The heavy loading is necessary to effectively wipe the reciprocating rod. This is balanced with the correct material and design geometry to provide long wear life of the seal, which has the potential to be compromised under such loading.

The challenge in this case was to incorporate these same proven principles in a micro-sized seal.

The Eclipse Solution

Continue reading The Manufacturing Challenges of Tiny Spring Energized Seals

Angled Spring Grooves for Custom Spring Energized Ball Seats

A ball valve is a simple and robust valve used in applications and industries across the spectrum. It consists of a ball with a hole through the center that can be rotated 90°.

custom spring energized ball seat

The hole is either aligned with flow and open, or perpendicular to flow and closed. The straightforward, quarter-turn action is fast and simple to operate, and the position of the handle provides a clear indicator of whether the valve is open or closed.

Most ball valves are typically used as a shut-off valve. Many households likely use ball valves at some point in the water supply plumbing.

Not relegated to common plumbing, many industries use ball valves for critical control applications including aerospace and cryogenics. Their reliable operation and high-pressure handling ability make them an attractive solution for many specialty operations.

Seals Inside a Ball Valve

The seals inside the ball valve play an important role in their performance and reliability. There are two main seals in a common ball valve, which are referred to as seats.

The seats are typically machined or molded to match the diameter of the ball and are mechanically compressed against the ball face. Seat material varies by application needs, but virgin PTFE is frequently used for this application.

The Client’s Issue

The customer wanted a very specialized ball seat: utilizing a spring energizer in the seat. While easy to suggest, this would create a significant challenge in how the seal is manufactured.

The customer was looking for a sealing solution for a ball valve in their industrial gas processing plant. The ball valve would serve as a critical shut-off point in the system. The valve would be actuated by an electric motor, and could therefore be operated remotely.

The customer was looking for an improvement in the overall wear life of the ball seats, while still providing consistent and predictable actuation torque. Being motor activated, the torque required to move the ball open or closed was limited—so the friction generated by the ball seats would need to be carefully controlled.

Operating Conditions:

  • Ball Valve Seat
  • Ball Diameter: Ø2.500”
  • Media: Petroleum Processing Gases
  • Pressure: 100 PSI
  • Temperature: -40° to 175°F

The Challenge

Continue reading Angled Spring Grooves for Custom Spring Energized Ball Seats

Sealing Solutions for Subsea Systems in the North Sea

Innovative Subsea Processing Technologies

The Aasgard oil and gas field in the North Sea has been operating since 1999. Innovative subsea processing technologies were used to compress the oil and gas on the site’s seabed to improve recovery rates as the field ages and as equipment begins to draw from increasingly deeper subsea reservoirs. The operator required seals for the lid and body of the control power distribution unit in order to protect its vital electronics in the harsh, unforgiving subsea environment.

As a globally trusted source for engineered components, seals, assemblies, and sub-systems for demanding environments, Technetics was uniquely positioned to evaluate and specify a sealing solution for this application. The system designer and Technetics engineers subsequently underwent a two-year testing phase to examine the performance of a variety of sealing options.

Demanding Subsea Environment

Due to the extremely demanding environment in which the subsea Subsea Techneticspressure vessel would be operating, finding a sealing solution that would meet both the operator’s and governmental requirements turned out to be lengthy and complex. Specifically, the operator noted that the seal needed to meet high-pressure requirements with a strict leak rate of 10-11 cc/sec He for a period in excess of 10 years.

Based on the extensive testing results, Technetics identified a HELICOFLEX® spring energized metal seal as the ideal sealing solution. The HELICOFLEX® seal consists of a close-wound helical spring core and outer jacket material that provides a highly ductile and plastic sealing surface. This combination of materials allows it to provide consistent and reliable sealing performance under uneven flange pressures and imperfections in the flange surface. Benefits of the HELICOFLEX® seal include helium tightness, long seal life, and excellent corrosion resistance.

This solution not only secured the electronic equipment inside the vessel, but it also alleviated any environmental and safety concerns from potential leakage and failure of the system. Thus, the installation of the HELICOFLEX® spring energized metal seal provided the required sealing integrity.

To learn more about the HELICOFLEX® seal, download the HELICOFLEX® seal PDF.


The original article can be found on Technetics’ website.

To learn more about Technetics products, speak to a Gallagher representative today by calling 1-800-822-4063