Category Archives: Garlock products

The Garlock sealing products section of our blog contains a number of articles dedicated to Garlock seals, diaphragms, expansion joints, shaft seals and much more.

Garlock Launches FLOOD-GARD Bearing Isolators for Fully Flooded Applications

FLOOD-GARD Offers Bearing Protection in Challenging Flooded Environments

Garlock has launched FLOOD-GARD Bearing Isolators for flooded applications. The patent-pending seal design provides bearing protection even in the most challenging flooded environments, extending the life of rotating equipment such as gearboxes, pumps, and motors.

“FLOOD-GARD™ allows Garlock to unlock value for our customers by taking industry leading bearing isolator technology, and advancing it even further, into a seal that excels in flooded conditions,” says Kevin Allison, Product Manager, KLOZURE®.

The latest addition to Garlock’s family of KLOZURE® Bearing Isolators, FLOOD-GARD™ is a revolutionary seal that combines improved safety and overall process efficiency with cost savings through extended equipment and bearing life. FLOOD-GARD’s Cam-Lock design provides excellent bore retention while allowing easy installation by hand, without the need for an arbor press. Other benefits include the ability to accommodate up to .015” of radial shaft misalignment and patented PTFE unitized construction that eliminates metal-to-metal contact, all while achieving an IP66 rating in most configurations — flanged, small cross section, step shaft and vertical.

FLOOD-GARD Benefits

  • Patented seal design provides bearing protection even in the most challenging flooded environments, extending the life of rotating equipment
  • Rugged, unitized construction for ease of installation
  • IP66 in most common design configurations
  • Available in standard and small cross section configurations
  • Substantially reduced installation time – NO ARBOR PRESS NEEDED
  • No metal-to-metal contact between stator and rotor
  • Handles up to .015″ of misalignment

FLOOD-GARD™ allows Garlock to unlock value for our customers by taking industry leading bearing isolator technology, and advancing it even further, into a seal that excels in flooded conditions.

FLOOD-GARD Design Parameters

  • Temperature: -22ºF (-30ºC) to 400ºF (204ºC)
  • Shaft to bore misalignment: ±0.015” (0.38 mm)
  • Axial motion to ±0.010” (0.25 mm)
  • Surface speed: to 3,000 FPM Max. (15.24 m/s)
  • Pressure: 7 psi intenal pressure

FLOOD-GARD Beta Sites

  • Gearboxes are common, but industries vary
  • Over 100,000 hours of runtime
  • Great success in all these industries

Beta Sites


For more information about Garlock products, or to learn more about the FLOOD-GARD, contact Gallagher Fluid Seals today.

Gallagher Fluid Seals is a preferred distributor of Garlock products and can help provide custom engineering solutions.

Gaskets for High-Density Polyethylene Flanges

Recent gasket failures in flanged joints of High Density Polyethylene (HDPE) piping.

Problem

HDPE piping joints are typically thermal fusion welded joints, but flanges may also be used. When flanges are used, an HDPE flange adapter with a metal backing ring is fused to HDPE piping, as shown in Figure 1. The HDPE flange adapters are used to connect to other flanged fittings, such as valves, elbows, tees, etc., with gaskets inserted between the flanged fittings.

Incident Description

Picture of Eroded GasketIn 2018, two HDPE flange adapter gaskets on two different valves that were part of an underground fire suppression system at a Department of Energy (DOE) nuclear facility in Amarillo, TX failed, causing several weeks of unplanned interruptions to nuclear facility operations. Fire suppression water was isolated to two nuclear facilities, requiring nuclear operations to be paused and fire watches to be established. Both couplings were installed by the same contractor and had been in service for approximately eight years. Both flanges were correctly torqued to 160 foot-pounds with no indication of the necessary re-torque. The initial failure of the gasket caused a low flow, high-pressure leak that was not detected for some time. Picture of Flange Face ErosionWith the system pressure operating at approximately 150 pounds per square inch (psi), the orifice created by the failure of the gasket(s) between the two flanged faces created a water jet, which eroded the metal valve flange and bolts.

Because HDPE will relax after the flange bolts are torqued, a re-torque after 24 hours is required. Even after the bolts are re-torqued, the face stresses drop to 400–600 psi. The lower face stress reduces the friction for maintaining the gasket in between the flange faces. The challenge is finding a gasket that can handle pressures that may exceed 200 psi, gauge (psig), but also seal well at relatively low stresses.

Due to the many inquiries from customers and engineering firms for gasket applications involving HDPE piping, Garlock, a gasket manufacturer, published a memo in January 2017 recommending using either GYLON® Style 3545 or MULTI-SWELL™ Styles 3760/3760U as the best options for HDPE flanges, even though the available compressive loads are lower than recommended. The reinforced gasket material of the GYLON and MULTI-SWELL has proven to prevent the internal water pressure from damaging the gasket under low-compression loads.

Other gasket manufacturers may have similar gaskets that will work for this application. It is important for the Design Engineer to work with the gasket manufacturer to properly specify the correct gasket.

Recommendations to HPDE Piping and Flanged Joints

When using HPDE piping with flanged joints, ensure that the flange bolts are re-torqued at least 24 hours after gasket installation.

When evaluating gasket material, be sure to include any surge pressure that could be caused by opening valve and starting pumps. Also, include any additional design/safety factors in your gasket calculation. And, directly work with the gasket manufacturer in making a selection.


If you have questions about HPDE piping and flanged joints or any other engineering applications, contact Gallagher Fluid Seals.

Original article written by Brian Rhodes, Department of Energy.

Low Temp Gaskets – How Low Can You Go?

Rare and Ultra-Pure Resources Present Unique Challenge to Finding Appropriate Low Temp Gasket

Modern technology often requires rare or ultra-pure materials that can only be handled or obtained within extreme environmental conditions. These same conditions present unique and hazardous difficulties when transporting or utilizing these resources. Resources such as liquid oxygen, nitrogen, or argon; all of which are classified as “industrial gases” are handled well below the normal temperature ranges that every-day liquids exist; ranging as low as -195.8°C (-320.4°F). This often makes it a challenging task to find a low temp gasket to fit the specifications for the application.

As an example, let’s look at argon; an important gas used in Welding, Neon Lights, 3D Printing, and Metal Production, just to name a few. It is far more economical to house and transport argon in its liquid state. However, it must be held at an astonishingly low -185.9°C. Fitting the pipes together and maintaining a seal in a cryogenically engineered system that the liquid argon is housed presents unique difficulties. Argon gas is colorless, odorless, tasteless, and can irritate the skin and the eyes on contact. In its liquid form it can cause frostbite.

There are important considerations that should be taken into account when installing gaskets for dangerous extreme low temp materials.

Proper Gasket Installation

Many gasket materials can become brittle, crack, shrink, and blow out when exposed to extreme cold – not something you want to happen at any time, let alone with a liquid that can freeze you into a meatsickle. So, proper installation is also key. During installation, it is important that all parts are dry, the installation is done at ambient temperature, and then re-adjusted with changes in temperature.

Cryogenics

Any mechanical seal that is sealing a product with a temperature below 0 degrees Celsius is given the name “Cryogenic”. Liquefied gases (LNG), such as liquid nitrogen and liquid helium, are used in many cryogenic applications, as well as hydrocarbons with low freezing points, refrigerants and coolants.

When selecting a low temp gasket or sealing material to be used in cryogenic service, it is important that the material can withstand cryogenic temperatures.

Low temperature applications are found across many industries, these include:

  • Chemical
  • Food
  • Pharmaceutical
  • Refrigeration
  • Petroleum
  • Automotive

Garlock GYLON® and KLINGER SLS/HL

3500 and klinger flexible graphite

Good gasketing materials that can withstand the frigid cold and are pliable in the requirement to maintain the seal would be the Garlock GYLON family of gaskets (PTFE, capable of -450°F (-268°C)) or the Klinger SLS/HL, which is made of flexible graphite and can withstand -400°F (-240°C)

Conclusion

As with all gasket applications, environmental conditions should be considered in conjunction with the functional requirements of the device. Though there are limited options to solve extreme low temp gasketing challenges, Gylon and Klinger can be a good fit for your application.


Portions of the original article were written by Michael Pawlowski and Sylvia Flegg of Triangle Fluid Controls Ltd. The article can be found on Empowering Pumps website here.

For more information about low temperature gaskets and which might be a fit for your application, contact Gallagher Seals engineering department.

A Case Study: GYLON® 3504 and 3545 Gaskets

Wine Manufacturing with GYLON®

Gylon 3504

Picture of Garlock 3545The GYLON® Style 3504 gasket is made of PTFE with aluminosilicate microspheres. It is designed for use in many acids, some caustics, hydrocarbons, refrigerants, and more.

Gylon 3545

The Garlock 3545 style is a highly compressible microcellular PTFE with a rigid PTFE core for improved handlability. Garlock 3545, made with Gylon material, is designed to compress and conform to irregular or damaged surfaces, making it suitable for flanges that generate lower compressive stresses, such and glass-lined flanges and equipment.

INDUSTRY

Food & Beverage – Wine Production

CUSTOMER

An award-winning, family owned & operated winery in the heart of a major US wine-growing region.

BACKGROUND

The customer crushes, presses, ferments, bottles, and labels all of their wines at their winery, but having traditionally utilized EPDM gaskets, they faced ongoing issues with seal reliability. This was occurring during various stages of the winemaking process, but especially so during the sterilization procedures between each batch, with subsequent leaks creating issues in production reliability, housekeeping, and potential contamination.

CHALLENGES FACED

Business was growing rapidly so new equipment had been installed, but at the same time the number of maintenance windows was reducing. Therefore the customer was looking for a more reliable and sanitary product to improve efficiency and help to protect the sensitive product. As well as the need to remain absolutely compliant with industry standards, the customer also placed utmost importance on prevention of any adulteration of their award-winning wine. As well as working around limited windows of opportunity for production trials the critical and expert opinion of wine tasters was therefore essential to ensure full approval of any component change in the process.

Continue reading A Case Study: GYLON® 3504 and 3545 Gaskets

Enhanced Surface Profiles for Gaskets

How this feature can improve performance and efficiency with gaskets

Gaskets have always been part of industrial production. However, gaskets have not always been forgiving, easy to use or simple to remove. What if the sealing products were designed to optimize the work put into them? What if the design had a level of intelligence built in? What if the design could make up for equipment damage? When used properly, enhanced surface profiles for gaskets can reduce leaks, spills and other releases that can damage the environment, put people at risk, result in fines and lead to costly downtime.

Using surface profiling to reduce area and increase stress is found in everyday life, from the soles of running shoes to the treads on vehicle tires. Reducing the contact area while maintaining compressive force results in increased stress. In the case of gaskets, traction or friction between a gasket and the flange faces is critical to holding internal pressure. If the downward force created by the fasteners in a flange is diluted or spread over a larger area, the overall stress is reduced.

Compressibility

Adding raised features to the surface of a gasket to reduce contact area and increase stress also tends to impact compressibility. Compressibility represents the ability of the gasket to conform to the surfaces it is being used to seal. Flange surfaces usually show signs of wear, pitting, scratches or other defects. It is cost-prohibitive to make two mating flange faces smooth and flat enough to seal without a gasket. The more compressible a gasket is, the better chance the user has of attaining an effective seal.

picture showing different gasket views
Image 1. (clockwise left to right) Traditional material sees heavier load around the gasket bolts and lighter load farther from the bolts. Image 2. Load distributed more evenly. Image 3. More stress toward the bolts. Image 4. Stress spread evenly around the gasket. (Images courtesy of Garlock)

Pressure Resistance

Compressibility also impacts the amount of pressure exposure on the gasket. When a flange assembly is pressurized, the internal media pushes outward on the inner diameter of the gasket. The thinner a gasket becomes, the less outward force it sees from internal pressure. This is referred to as improved “blowout resistance.” Unfortunately, one common error made when a gasket blows out is to replace it with a thicker gasket. This puts more gasket surface in the pipe or vessel for the internal pressure to act on.

Sealability

To create an effective seal, there are two functions the gasket must accomplish.

First, it needs to conform to the flange face to prevent the media from passing between itself and the flange faces. This is where the compressibility is important. Continue reading Enhanced Surface Profiles for Gaskets

Fried Snack Foods and GYLON® Style 3504 Gasket

Fried Snack Foods and GYLON® Style 3504 Gasket

The GYLON Style 3504 gasket is made of PTFE with aluminosilicate microspheres. It is designed for use in moderate concentrations of acids, caustics, hydrocarbons, refrigerants, and more.

It provides a tight seal, improved performance over conventional PTFE, reduced product loss and emissions, reduced creep relaxtion, excellent bolt torque retention, it doesn’t burn, will not support bacterial growth, plus many more benefits.

INDUSTRY

Food Processing – Fried Snack Foods

CUSTOMER

A major diversified food & beverage manufacturer, with facilities located in all regions across the globe.

BACKGROUND

The customer had persistent problems when sealing hot oil applications on its bulk snack food fryers across several production sites. Build-up of polymerised vegetable oil on the flanges caused unsightly mess, maintenance complications, financial implications, and posed a significant fire risk.

CHALLENGES FACED

As well as ensuring that the sealing material was compliant to FDA and EN1935 standards, the challenge was to ensure that the gaskets would perform well under the difficult conditions presented by the high oil temperatures. Additionally, because the production line was also subject to regular and aggressive cleaning cycles, the gasket material was required to be compatible with other aggressive chemicals across a broad pH range.

Continue reading Fried Snack Foods and GYLON® Style 3504 Gasket

Style 404 Expansion Joint for Abrasive Applications

Abra-Line Style 404The ABRA-LINE™ family of products was developed for highly abrasive applications typically found in the power generation, fertilizer, mining and chemical industries. These may include flue gas desulphurization systems, phosphate mining, dry bulk power transfer systems, tailings and slurry applications. Our proprietary urethane formula was designed to reduce wear and extend
service life.

Style 404 Expansion Joints are specially designed for full vacuum abrasive service applications. The tube material is a proprietary urethane formulation. Style 404 can be constructed as a single or multiple arch design. It can also connect pipe flanges in concentric or eccentric tapers, to join piping of unequal diameters.

Case Study: Chemical Processing

Industry
Chemical Processing

Observation
A stainless hosing was used and would continuously fail due to abrasion on the leading edge of the hose. The hosing would last for 3 to 6 months before replacement.

Continue reading Style 404 Expansion Joint for Abrasive Applications

NEW Expansion Joint Material – ABRA-SHIELD™

Garlock is excited to announce the launch of ABRA-SHIELD, a new expansion joint material designed for abrasion resistance and sustainability in demanding high temperature operating conditions.

ABRA-SHIELD™As the newest addition to Garlock’s family of abrasion resistant expansion joint materials, ABRA-SHIELD will join ABRA-LINE® and Natural Rubber to provide a variety of liners that cater to increased abrasion protection. ABRA-SHIELD will be an option for use with a number of expansion joint products that Garlock offers – including styles 204, 206, 7250, 8400 and 9394. These expansion joints also provide high levels of protection from stress, misalignment, vibration, noise, shock and corrosion.

In abrasion resistance testing – which provides data to compare materials and predict the lifetime of a material or coating – ABRA-SHIELD provided 50% higher abrasion resistance than standard EPDM (ethylene propylene diene monomer rubber). ABRA-SHIELD will be the recommended solution in abrasive applications (such as slurry, ash and brine) with sustained or spiked temperatures between 180°F and 300°F. For temperatures outside of this range, other materials in Garlock’s family of abrasion resistant expansion joints would be suggested.

Continue reading NEW Expansion Joint Material – ABRA-SHIELD™

[VIDEO] Application Guidance for GYLON EPIX™

GYLON EPIX™ WebinarWe recently added the GYLON EPIX™ – The Next Generation in PTFE Gasketing webinar to our website.  The webinar discusses Garlock’s revolutionary new gasketing material, with its patented hexagonal surface, which concentrates gasket stress, providing improved compressibility and bolt load retention, improving sealability and blowout resistance.

Below is the third and final section of the webinar, which provides application guidance for GYLON EPIX™, calling out where it makes most sense to utilize this revolutionary new material.

[VIDEO] Features & Benefits of GYLON EPIX™

GYLON EPIX™We recently added the GYLON EPIX™ – The Next Generation in PTFE Gasketing webinar to our website.  The webinar discusses Garlock’s revolutionary new gasketing material, with its patented hexagonal surface, which concentrates gasket stress, providing improved compressibility and bolt load retention, improving sealability and blowout resistance.

Below is the second section of the webinar, which discusses the features and benefits of the GYLON EPIX™ material, and what differentiates it from any other gasketing material on the market today.