Category Archives: Freudenberg Sealing

The Future of Seals – Identifying and Communicating Levels of Wear

Seals do their jobs tirelessly, usually behind the scenes. Until now, machines mostly had to be dismantled to check the condition of these parts. That’s expected to change: At Freudenberg Sealing Technologies, a cross-disciplinary team is testing seals that identify and communicate their level of wear. They are based on a novel material that functions as a sensor.

It’s time for maintenance at a beverage bottling facility. Different components of the equipment are opened up, and the seals on tubes, pumps and valves are checked. If they are worn out, they have to be replaced. But if they are still intact, the check itself – a common yet expensive process – is superfluous. What would happen if the seals themselves could autonomously measure and transmit information about the level of their wear? And determine the exact point – no sooner and no later – when little of the seal lip is left and the seal has to be replaced? The future of seals may lie in self-identifying seals.

Seals Identifying Wear Automatically

A cross-disciplinary research team at Freudenberg Sealing Technologies addressed this question. Working with a customer from the process industry, experts developed a seal that measures its own wear. The key benefit: The maintenance of processing equipment – filling equipment in this case – could be performed based on actual need. Moreover, the service staff would have the opportunity to time the maintenance perfectly for the equipment’s operating schedule. Unplanned stoppages due to leaks would become a thing of the past.

Measurement Principle
The seal lip serves as an insulator. If it is worn, the capacity between the electrically conductive seal body and the housing changes.

Electrically Conductive Rubber

Seals are mostly made of elastomers that, in their pure form, are unable to process signals. To arm them with intelligence, it is possible to integrate a sensor or a microchip into a seal. But since the integrated element is a foreign body, it could impair the seal’s functioning. “So we focused our attention on approaches where the intelligence comes from the material itself,” Dr. Boris Traber, who is in charge of the development of new materials at Freudenberg Sealing Technologies. The researchers equipped a sealing material with special fillers to make the elastomer electrically conductive. At the same time, the material had to have qualities that are just as functional as those of a conventional seal. And, since the seals come into direct contact with the food during the filling process, they can only contain components that are on the positive list approved by the EU and the FDA.

Electric Signal Points to Leakage

The design and measurement principles that the seal uses to convey the level of its wear are just as important as its material mixture. In this particular application, an external transducer sends an electric signal over a lead to the seal. This creates voltage between the electrically conductive portion of the seal and the external housing, and the seal lip in-between insulates the two surfaces from one another. The greater the wear of the seal, the less it can effectively insulate the two electrodes from one another. As a result, the electrical capacity changes. If you measure the change, you can draw conclusions about the condition of the seal lip.

Development to Production Readiness

This smart seal is now due to be developed to production-readiness for specific applications. The effort involves material developers, product developers, process specialists and sensor experts who are working hand-in-hand with colleagues from operating areas, the Freudenberg Sealing Technologies sales organization and the customer’s application experts. Of course, it would take a good many experts to actually make seals that were talkative. But it would be possible – that much is clear, and the future of seals is looking bright.


For more information about sealing technologies, and to find out which seal might be a fit for you, contact Gallagher’s Engineering Department.

The original article was featured on Freudenberg’s website and can also be found in the May 2019 edition of their ESSENTIAL magazine.

Freudenberg Announces New Seals and Materials for the Aerospace Industry

Freudenberg Sealing Technologies introduced several new material and sealing innovations at the 2019 International Paris Air Show.

These new products are designed to help aerospace customers address ever increasing safety and performance requirements in the industry.

During the June 17-23 event in Paris, Freudenberg showcased a new high temperature, fireproof material; an Omegat OMS-CS cap seal; and new ethylene propylene diene monomer (EPDM) and a fluoroelastomer (FKM) developmental material.

“Our aerospace customers strive continuously to be faster, safer and more efficient, which in turn requires us to innovate to help them reach those goals – a challenge we enthusiastically embrace,” said Vinay Nilkanth, vice president, Global Mobility Sector, Freudenberg Sealing Technologies. “The launch of several new products aimed at improved performance underscores Freudenberg’s commitment to being a global leader and development partner to the industry.”

Freudenberg’s new proprietary fireproof sealing fabric is made to withstand the extremes. Tested on standard aerospace bulb seals and passing AC20-135 fireproof requirements, the fabric acts as a barrier, providing up to 15 minutes for necessary corrective action. The fabric performs as well as other industry standard solutions but is much more cost effective.

Omegat Cap Seal

For use in dynamic, reciprocating applications where low friction is required, the new Omegat OMS-CS cap seal is a two-piece rod seal set consisting of an engineered polytetrafluoroethylene (PTFE) ring and an O-ring energizer. The seal offers low breakaway and running friction, and is chemically compatible with aerospace fluids and greases. It also provides excellent wear and extrusion characteristics, and has angled blow-by notches and lubrication grooves.

Freudenberg’s new EPDM LM426288 material is for use in low pressure static sealing to -77°C (-106°F) and has excellent resistance to, and swell behavior in, AS1241 phosphate ester hydraulic fluids. The material offers high temperature compression set resistance and short term resistance to 150 °C (302°F) for high temperature hydraulic systems such as hydraulic braking.

The FKM LM426776 material for use in low pressure static sealing to -67°C (-88°F) shows excellent resistance to several aerospace media, including jet turbine and gearbox lubricants, high and low aromatic content jet fuels, and fire resistant hydrocarbon hydraulic fluids. The material offers short-term high temperature resistance to 270°C (518°F) and long-term compression set resistance at 200°C (392°F).


The original article can be found on Freudenberg’s website.

Gallagher Fluid Seals is a preferred distributor of Freudenberg Sealing Technologies. To learn more about Freudenberg products, speak to a Gallagher representative today by calling 1-800-822-4063

Tackling Flavor Transfer with Seals Made from Globally-Certified Materials

The popularity of multi-flavor drink dispensers, those touch screen wonders that offer dozens of beverage and flavor options to consumers, has grown during the past decade. Manufacturers are installing these complex machines in venues and locations throughout the world.

Elastomers and flavor transfer

But what’s great for an individual customer – a cherry-ginger-lime cream soda, for example – can play havoc with the elastomer seals inside the machine. Add in hygienic cleaning requirements and proper food contact certifications and equipment manufacturers can find themselves spending months chasing challenges like flavor transfer, leaks and material compliance approvals.

Freudenberg-NOK Sealing Technologies, a leading specialist in advanced sealing applications, has a portfolio of solutions to resolve these issues. The company, which runs the business operations for Freudenberg Sealing Technologies in the Americas, will showcase a variety of globally-certified material options at the 2018 BevTech®, the annual meeting of The International Society of Beverage Technologists (ISBT), taking place April 30-May 2 in Albuquerque, N.M.

“Flavors are almost never the same. They are a diverse mixture of ingredients with very different chemical properties.”

“Flavors are almost never the same. They are a diverse mixture of ingredients with very different chemical properties,” said Christian Geubert, Global Application Engineering Manager for Freudenberg Sealing Technologies’ Process Industries organization. “Some of these chemicals are very good solvents for rubber, which means they can destroy rubber seals and their performance. Only through extensive testing and analysis can industry challenges with flavor transfer and cleaning solutions be isolated, understood and successfully addressed with sealing materials and designs that address an entire range of conditions.”

Geubert will discuss the complex factors associated with flavor transfer and their impact on material properties and performance during a presentation at the 2018 BevTech® meeting. Following this presentation, Geubert and a team of Freudenberg experts will be on hand in booth #45 to answer questions and explain the advantages of a trio sealing materials including 70 EPDM 291, 70 FKM 727, and Fluoroprene® XP. Each of these materials is globally-certified for food contact in the United States (NSF-51) and the European Union (EC 1935/2004).

picture of flavor transfer seals

With its outstanding qualities in critical media, Freudenberg’s 70 EPDM 291 is the first choice for a wide variety of O-Rings, formed parts and diaphragm applications in the food and beverage industry. 70 EPDM 291 is compatible with bag-in-box (BIB) syrups, is suited for exposure to dispenser cleaning fluids, and is specifically formulated to resist flavor transfer.

Dynamic sealing at dispensing temperatures just above 32°F (0°C) is problematic for most Fluorocarbons (FKM) due to reduced flexibility. Freudenberg’s 70 FKM 727 is the only globally-certified, low-temperature FKM in the food and beverage industry. While maintaining compatibility with BIB syrups and cleaning agents, 70 FKM 727 adds best-in-class flexibility in this critical temperature range.

When standard EPDM and FKM materials fail to perform in particularly demanding food and beverage applications – including those found in high-ratio, multi-flavor dispensers – Freudenberg’s Fluoroprene® XP can be called into action. This unique, highly-fluorinated FKM is not only compatible with non-polar materials like oils, it also offers excellent compatibility with polar fluids like acids and bases and provides best-in-class flavor transfer resistance.


The original article can be found on Freudenberg’s website.

To learn more about Freudenberg products, speak to a Gallagher representative today by calling 1-800-822-4063

Lower Friction, Weight, and Emissions – The Freudenberg BlueSeal

Freudenberg-NOK Sealing Technologies has begun supplying innovative, lightweight radial shaft seals to a major Detroit-based vehicle manufacturer for installation on the V6 and V8 engines powering its newest pickup trucks and sport utility vehicles (SUVs).  Enter the Freudenberg BlueSeal.

The BlueSeal, part of Freudenberg’s award-winning Low Emission Sealing Solution (LESS) portfolio of engine, transmission and E-Mobility product solutions, provides significant weight, friction and installation advantages over traditional radial shaft seals. Under the contract, Freudenberg-NOK will produce more than 2 million BlueSeals annually. Production is expected to increase further to more than 4 million units annually with orders from additional customers.

40 percent lighter and 50 percent less space to install

From turbocharged engines and 10-speed transmissions topicture of blueseal electrified and electric vehicle systems, the propulsion technologies on display at the 2019 North American International Auto Show (NAIAS) offer evidence that fuel economy, emissions and performance are still top of mind with manufacturers and consumers alike. Freudenberg’s BlueSeal offers customers a way to help achieve better fuel economy and lower emissions in large displacement internal combustion and turbocharged engines. The BlueSeal is 40 percent lighter than conventional radial shaft seals and requires 50 percent less space to install.

“Vehicle manufacturers are looking at every possible way to increase fuel efficiency and reduce weight, especially in trucks, SUVs and turbo-charged performance vehicles,” said Jeff Nelson, vice president, Automotive Sales, Freudenberg-NOK. “Even the smallest components can have a dramatic impact on the function and efficiency of vehicle powertrains.”

The BlueSeal is made of a single material – a steel-reinforced Polytetrafluoroethylene (PTFE) – designed to withstand harsh engine fluids while providing an axial space reduction, which allows manufacturers to downsize the engine. The seal has a low-friction Power Optimized Polytetrafluoroethylene (POP®) lip design that insures smaller dissipation loss, reduces the temperature in the contact area between the seal and shaft and performs flawlessly under different engine conditions.

Dual product development strategy for the automotive industry

The BlueSeal increases durability through its perfect sealing behavior and has a higher resistance to pressure than traditional seal designs. Its R-Tight® technology results in near-zero air leaks during assembly tests, allowing manufacturers to isolate other potential leak paths in the system.

Freudenberg is pursuing a dual product development strategy that supports continued development of advanced materials and components for internal combustion powertrain applications while pursuing new technologies that address emerging challenges associated with alternate mobility options like lithium-ion batteries and fuel cells. The BlueSeal, like many of Freudenberg’s LESS products, offers system benefits in both arenas.

“The automotive industry is undergoing profound transmission and driveline changes,” Nelson said. “It is our job to provide customers with exceptional component solutions that address the needs of all mobility platforms regardless of the fuel they use. The need to harness energy effectively and efficiently is a common denominator across our development efforts.”


The original article can be found on Freudenberg’s website.

To learn more about Freudenberg products, speak to a Gallagher representative today by calling 1-800-822-4063

Water Regulations and NSF 61 Compliant Elastomers

Replacing Aging Water Infrastructure With NSF Compliant Materials

There are over 155,000 public water systems in the United States and more than 286 million Americans who rely on community water systems daily.  Since most of the infrastructure was built between the early 1900’s and 1960 using outdated technology/products and capabilities, nearly everything is approaching the natural end of it’s lifespan.

Some estimates put the repairs and replacement of thePicture of NSF Compliant Gaskets infrastructure between $250B and $500B over the next 20-30 years. Several applications will need to be updated or fully replaced for the safety of consumers and quality of delivery, including:

  • Joining and sealing materials
  • Mechanical devices
  • Pipes or related products
  • Process media
  • Plumbing devices
  • Non-metallic potable water materials
  • Hydrants
  • and Public drinking water distribution (tanks and reservoirs, maters, individual components)

Joining and Sealing Materials

When these systems were being constructed and assembled decades ago, there were limited regulations and requirements that needed to be met. Gaskets, at least the traditional ones, were often made in two different ways: (1) Red Rubber (ASTM D1330 Grade 1 &2) with compressed non-asbestos or (2) cloth-inserted rubber with compressed asbestos.

However, today’s acceptable gasket requirements for the potable water industry differ greatly from those in the past. Gaskets have strict guidelines to abide by and must be:

  • Chemically resistant
  • NSF compliant
  • Food grade compliant
  • Electrically isolating

Because of the need for health and safety, the National Sanitation Foundation (NSF) was created in order to establish minimum requirements for the control of potential adverse human health effects from products that contact drinking water. In addition to gaskets, the NSF covers a variety of products and parts relevant to the water industry, including: pipes, hoses, fittings, cements, coatings, gaskets, adhesives, lubricants, media, water meters, valves, filters, faucets, fountains, and more.

So you might ask – why does the NSF require different materials and regulations for gaskets compared to years ago?

First things first – leaks are a major issue with the aging infrastructure. Improperly placed gaskets & seals or faulty products can cause leaks. This in turn could pose health risks to people drinking potable water or using products processed with potable water.

Additionally, the treatment process and chemicals utilized are Picture of NSF 61 Compliant Sealsdifferent from previous “standard” products. For example, research and testing over many years has concluded that traditional gaskets, which were used many years ago, could pose a safety threat to those drinking water processed with specific materials. This led to updated regulations for NSF 61’s drinking water system components.

Lastly, engineered sealing solutions are more important than ever. There’s a wide variety of custom engineered water systems throughout the U.S. – climate, geographic terrain, and the needs of the community are all reasons for why water infrastructure is so unique. Because of this, custom gaskets, seals, and other products are needed to supplement those systems.

Luckily there are many companies dedicated to providing the highest quality NSF 61 products. These trusted brands have proven materials to count-on when replacing or repairing water infrastructure:

Garlock’s NSF 61 Family of products

Parker’s NSF compliant products

Freudenberg’s new generation of NSF products

For more information on how Gallagher Fluid Seals’s engineers can help you with a custom solution, call us at 800.822.4063

[Video] Installation of Large Size Radial Shaft Seals

Installing Radial Shaft Seals

Radial shaft seals, also known as lip seals, are used to seal rotary elements, like a shaft or rotating bore. Hydraulic pump seals, axle seals, valve stem seals, or strut seals are the most common examples the average person would recognize.

Radial shaft seals are used in a variety of applications and perform two essential functions: the first is to avoid leakage through retaining the bearing or system lubricant; the secondary function is to avoid the contamination of the system by outside impacts (external particles or environmental issues).

Continue reading [Video] Installation of Large Size Radial Shaft Seals

The Perfect Wave; The Gerromatic Rotary Seal

Gear motors, pumps and stirring units keep process material in constant motion in the process industry’s production facilities. A large number of shaft seals are used at drive shafts to keep liquids securely within the equipment. But leaks may be more likely to occur if the pressure acting on the seals becomes too great. Freudenberg Sealing Technologies has developed a new rotary seal, the Gerromatic, which has a wave-shaped sealing lip. This increases the maximum amount of pressure that can be applied. The sinusoidal contact path also reduces friction and provides self-cleaning, which extends operating life.

In the process industry, including the food and beverage sector, shaft seals used in equipment mostly have a rotation-symmetrical seal lip, which abuts the rotating shaft with a groove-like contact pattern. During wet-running, this can cause the medium to be displaced at the contact surface. The seal then runs in a more or less dry condition, leading to increased friction and higher temperatures. The increased friction increases wear and reduces the efficiency of the equipment. The accompanying rise in temperature is not desirable, especially when the process media are temperature-sensitive. If the seal lip is also exposed to high temperatures at high rotational speeds – for example, due to a process material that applies pressure to the seal lip in a vessel with a stirring unit below it – the lip can fold down on the low-pressure side, which would result in immediate leakage and the seal’s failure.

Continue reading The Perfect Wave; The Gerromatic Rotary Seal

Resolving Food and Beverage Challenges

When it comes to sealing food and beverage systems against leaks, contamination and malfunctions, meeting a product specification does not guarantee that seals will function as needed, two Freudenberg-NOK Sealing Technologies experts told a webinar audience in September. Freudenberg-NOK runs the business operations for Freudenberg Sealing Technologies in the Americas.

Food and BeverageFreudenberg’s David Clark, Operations Manager, Central Laboratory and with Ryan Fleming, Analytical Laboratory Manager, provided insight about the nature of elastomers, market trends like custom flavor combinations, regulatory requirements and the importance of material compatibility and advanced analytical testing. All of these factors must come into play when choosing the right material to produce effective elastomer components for food and beverage machinery, they emphasized during their Beyond a Spec: Choosing the Right Sealing Materials for Food and Beverage Applications webinar.

“Today’s global industry means engineering for multiple markets and diverse regulatory compliance standards, which can be challenging and expensive, so it must be considered early,” said Clark. “Simply meeting a product specification does not ensure a seal will function.”

Continue reading Resolving Food and Beverage Challenges

Heat Shields Boost Battery Safety in EVs

Due to the growing energy density of battery systems, the developers of lithium ion batteries must satisfy ever higher safety requirements. It is especially crucial to keep a single damaged cell from overheating the entire battery module. Freudenberg Sealing Technologies has developed a innovative heat shields for use in prismatic and pouch cells with almost no impact on the required installation space. It combines the high heat resistance of a silicone-based elastomer with the high insulating properties of air.

FST Heat Shields For Batteries The goal is greater range without the battery growing in size and weight: High energy density, which has been battery developers’ top priority, creates a basis for the broad acceptance of electric vehicles. But the more energy is stored in a confined space, the greater the safety requirements. So precautions are essential in case a damaged cell overheats. Experts call the phenomenon “thermal runaway,” and it can cause the temperatures in a cell to rise as high as 600°C. The risk is that the battery’s cooling system would not be able to drain the heat away quickly enough under these conditions. If neighboring healthy cells also heat up due to the heat buildup, a chain reaction can result that, in the worst case, could lead the entire battery system to explode.

Continue reading Heat Shields Boost Battery Safety in EVs

Sealing Solutions for Machine Tools

Gallagher Fluid Seals is a long-time partner of Freudenberg Sealing Technologies.  From their classic Simmerring® radial shaft seal, to V-rings, to guide rings, to u-cups, Freudenberg is an innovative seal manufacturer that solves problems.  Check out the video below to see the many sealing elements developed for machine tools, specifically hammer drills and demolition hammers.

Overcoming the toughest resistance with full penetrating power, whether against concrete or stone: hammer drills and demolition hammers literally have a huge impact. Sealing solutions and rubber molded parts from Freudenberg Sealing Technologies are meanwhile essential to them. They robustly and reliably guarantee the machine’s power output and a long lifetime of drilling, chiseling, demolishing and stripping. Freudenberg Sealing Technologies is the leading global market and technology specialist in sealing technology. Seals from Freudenberg Sealing Technologies are employed in a wide range of products. Their industrial applications include machine tools and, as quintessential examples, hammer drills and demolition hammers.