Category Archives: Elastomers

Elastomer Seals for Instrumentation: Seal/Groove Design

Seal Design: Instrumentation IndustryGallagher recently released our High Performance Elastomer Seals for the Instrumentation Industry White Paper.  This was written by Russ Schnell, an Elastomer Consultant contracted by Gallagher Fluid Seals, and a former Senior Application Engineer with the Kalrez® perfluoroelastomer parts business at DuPont.  This white paper is now available for download on our Resources page.

Below is the third and final section of the white paper, which will discuss the importance of proper seal and groove design.


Proper Seal & Groove Design

Elastomer Seal: Perfluoroelastomer PartsProper seal design is a necessity for elastomer seals to perform reliably over the long term. Many of the instrument applications mentioned above use o-ring seals. The suggested compression for an elastomer o-ring seal to perform properly is typically a minimum of 16%, and a maximum of 30%. However, this range must also take into account the thermal expansion of an elastomer at elevated temperatures as well as any swell due to chemical exposure. Many of the elastomer seals used in instruments are small o-rings, which can create design issues. This is especially true for perfluoroelastomer parts which have a relatively high coefficient of thermal expansion (CTE). Fluoroelastomers have a lower CTE, making seal design easier at elevated temperatures.

Continue reading Elastomer Seals for Instrumentation: Seal/Groove Design

[VIDEO] How to Choose a Fluoroelastomer

Fluoroelastomer Basics - Consideration When Choosing a FluoroelastomerGallagher Fluid Seals recently posted our new Fluoroelastomer Basics webinar on gallagherseals.com.  This is the third and final section of our webinar, focusing on Considerations When Choosing a Fluoroelastomer. The full video is now available on our Resources page.

This video discusses considerations when choosing a fluoroelastomer, including temperature performance range, performance in harsh chemical exposure, and the need to take caution when using fluoroelastomer blends.

[VIDEO] Fluoroelastomer Materials

Gallagher Fluid Seals recently posted our new Fluoroelastomer Basics webinar on gallagherseals.com.  This is the second section of our webinar, focusing on Fluoroelastomer Materials. The full video is now available on our Resources page.

This section of the video discusses different fluoroelastomer materials, along with their mechanical and physical properties, and in which applications they’re normally found.

[VIDEO] Basic Understanding of Fluoroelastomers

Fluoroelastomer Basics - DOWNLOAD VIDEOGallagher Fluid Seals recently posted our new Fluoroelastomer Basics webinar on gallagherseals.com.  This is the first section of our webinar, focusing on the Basic Understanding of Fluoroelastomers. The full video is now available on our Resources page.

In this snippet, learn the differences between elastomers and fluoroelastomers, and how the amount of fluorine in an elastomer affects it’s chemical resistance and properties.

 

NEW! Elastomer Failure Modes – Part 4

Failure ModesGallagher recently published its Failure Modes of Elastomers in the Semiconductor Industry White Paper, now available for download on our site.  This white paper discusses common issues that occur with elastomer seals in the semiconductor industry. The excerpt below is the fourth and final section of our new white paper, discussing Volatiles (offgassing) and Particle Generation.  To download the white paper in its entirety, visit our Resources Page, or click on the image to the right.


Failure Modes of Elastomers in the Semiconductor Industry

Failure ModesHigh performance elastomers are found in many applications in the semiconductor industry (see paper titled Perfluoroelastomers in the Semiconductor Industry). Though perfluoroelastomer (FFKM) seals are formulated to meet the highest performance requirements of integrated circuit (chip) manufacturers, even these elastomers can’t solve every sealing application nor will they last forever in service. Additionally, end users need to understand subtle performance differences between perfluoroelastomers in the same product line. For example, one product may be better at minimizing particle generation while another may be better for high temperature services.

Continue reading NEW! Elastomer Failure Modes – Part 4

NEW! Fluoroelastomer Basics Webinar

Fluoroelastomer Basics - DOWNLOAD VIDEOGallagher Fluid Seals recently made our Fluoroelastomer Basics webinar available on the website.

This webinar will discuss:

  • Differences between an elastomer and a fluoroelastomer
  • The important role fluorine plays
  • Types of fluoroelastomers and their features and benefits
  • Material performance comparisons
  • Chemical resistance of fluoroelastomers
  • Temperature ratings of fluoroelastomers
  • Considerations when choosing the right fluoroelastomer for your application

What is an Elastomer?

Fluoroelastomer - Elastomer CrosslinksAn elastomer is made up of long chain polymers which are connected by crosslinks.  Crosslinks are analogous to springs and provide an “elastic” (recovery) nature to the material.  The crosslinks are relatively stable, but can break down under extreme temperatures and pressures.

Continue reading NEW! Fluoroelastomer Basics Webinar

NEW! Elastomer Failure Modes – Part 3

Failure ModesGallagher recently published its Failure Modes of Elastomers in the Semiconductor Industry White Paper, now available for download on our site.  This white paper discusses common issues that occur with elastomer seals in the semiconductor industry. The excerpt below is the third section of our new white paper, discussing O-Ring Stretch, Chemical Attack, Plasma Cracking, and Permeation.  To download the entire white paper, visit our Resources Page, or click on the image to the right.


Failure Modes of Elastomers in the Semiconductor Industry

Failure ModesHigh performance elastomers are found in many applications in the semiconductor industry (see paper titled Perfluoroelastomers in the Semiconductor Industry). Though perfluoroelastomer (FFKM) seals are formulated to meet the highest performance requirements of integrated circuit (chip) manufacturers, even these elastomers can’t solve every sealing application nor will they last forever in service. Additionally, end users need to understand subtle performance differences between perfluoroelastomers in the same product line. For example, one product may be better at minimizing particle generation while another may be better for high temperature services.

Continue reading NEW! Elastomer Failure Modes – Part 3

NEW! Elastomer Failure Modes – Part 2

Failure ModesGallagher recently published its Failure Modes for Elastomers in the Semiconductor Industry White Paper, now available for download on our site.  This white paper discusses common issues that occur with elastomer seals in the semiconductor industry. The excerpt below is the second section of our new white paper, discussing Loss of Sealing Force, and Extrusion.  To download the white paper in its entirety, visit our Resources Page, or click on the image to the right.


Failure Modes of Elastomers in the Semiconductor Industry

Failure ModesHigh performance elastomers are found in many applications in the semiconductor industry (see paper titled Perfluoroelastomers in the Semiconductor Industry). Though perfluoroelastomer (FFKM) seals are formulated to meet the highest performance requirements of integrated circuit (chip) manufacturers, even these elastomers can’t solve every sealing application nor will they last forever in service. Additionally, end users need to understand subtle performance differences between perfluoroelastomers in the same product line. For example, one product may be better at minimizing particle generation while another may be better for high temperature services.

Continue reading NEW! Elastomer Failure Modes – Part 2

NEW! Elastomer Failure Modes White Paper

Failure ModesGallagher recently published its Failure Modes of Elastomers in the Semiconductor Industry White Paper, now available for download on our site.  This white paper discusses common issues that occur with elastomer seals in the semiconductor industry. The excerpt below is the first section of our new white paper, discussing groove design and seal leakage.  To download the entire white paper, visit our Resources Page, or click on the image to the right.


Failure Modes for Elastomers in the Semiconductor Industry

Failure ModesHigh performance elastomers are found in many applications in the semiconductor industry (see paper titled Perfluoroelastomers in the Semiconductor Industry). Though perfluoroelastomer (FFKM) seals are formulated to meet the highest performance requirements of integrated circuit (chip) manufacturers, even these elastomers can’t solve every sealing application nor will they last forever in service. Additionally, end users need to understand subtle performance differences between perfluoroelastomers in the same product line. For example, one product may be better at minimizing particle generation while another may be better for high temperature services.

Continue reading NEW! Elastomer Failure Modes White Paper

Freudenberg’s Molding Process

Seals and molded rubber technical parts are mostly given their form in closed molds. The rubber mixture is heated inside them so that vulcanization and solidification can take place. After a very precisely defined heating time, the degree of cross-linking reaches its maximum level. Then the mold can be opened and the component removed.

There are many different molding processes. The most important of them – and the ones most frequently used at Freudenberg Sealing Technologies (FST) – are listed here.

Compression Molding
Compression MoldingCompression molding is one of the oldest ways to manufacture technical elastomer components. First, a blank is manufactured that is large enough to fill out the form of the component being produced. It is inserted into the component mold in the tool (tool cavity). The component is given its form by closing the tool in the press. Due to the heat of the heating plate in the press, high pressure builds up inside the tool due to thermal expansion, and the vulcanization process is initiated.

Continue reading Freudenberg’s Molding Process