Category Archives: Elastomers

Parker’s EM163-80 Meets Both NAS1613 Revision 2 and 6, Is There a Difference?

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.

Original content can be found on Parker’s Website and was written by Dorothy Kern, applications engineering manager for the Parker O-Ring & Engineered Seals Division.


Perhaps you know Parker’s newest EPDM material is EM163-80. Featuring breakthrough low temperature functionality, resistance to all commercially available phosphate ester fluids, and the ability to be made into custom shapes, extrusions, and spliced geometries, EM163-80 represents the best-in-class material for applications needing to seal phosphate-ester-based fluids. The latest news is that EM163-80 meets the full qualification requirements of both NAS1613 Revision 6 (code A) and the legacy Revision 2 (no code). Parker has been inundated with questions about the specification differences between Revision 6 and 2, enough that it makes sense to devote a blog topic explaining the fluids, conditions, and dynamic cycling requirements which are required to qualify EM163-80 to each specification.

The easiest part of this comparison is evaluating the areas of Revision 6 which are very much a copy and paste from Revision 2. Compression set conditions, aged and un-aged, plus temperature retraction requirements, aged and un-aged, are identical. Lastly, both specifications require a test to verify the elastomers will not corrode or adhere to five different metal substrate materials. That is pretty much where the similarities end.  Now for the contrasts.

Specimen size

The first subtle difference is the specimen size. Both specs require testing to measure the change in physical properties and volume following a heated immersion in phosphate ester fluids. For the most part, No Code qualification requires testing to be completed on test slabs or O-rings, while the newer revision, Code A, requires testing on test slabs AND O-rings. Not a big difference, but still, a difference.

The fluid conditions are very similar in both specs, but not identical. There are only two temperatures for the short term 70 hour exposure: 160°F and 250°F. Another similarity is that the longer soaks are at 225°F for 334 and 670 hours. The more difficult A Code also requires 1000 and 1440 hours at 225°F. We begin to see the requirements for the later revision are more reflective of the industry conditions, right?

Fluids

Next, we look at the fluids, which truly are a key difference between the two documents. Revision 2 fluid is exclusively for AS1241 Type IV, CL 2 while revision 6 states the elastomers must meet “all commercially available AS1241 Type IV, Class 1 and 2, and Type V”. Table 1 outlines the AS1241 fluids in context of both NAS 1613 revisions.

Revision 2 Revision 6
Low Density Hyject IV A Plus AS 1241 Type IV class 1 X
Low Density Skydrol LD4 AS 1241 Type IV class 1 X
High Density Skydrol 500B-4 AS 1241 Type IV class 2 X X
Low Density Skydrol V AS 1241 Type V X
Low Density Hyjet V AS 1241 Type V X
Low Density Skydrol PE-5 AS 1241 Type V X

Basically, to pass Revision 6, the material must demonstrate compatibility for all six commercially available fluids, while Revision 2 only has one fluid which is must be verified for compatibility. Again, we see Revision 6 is much more comprehensive than Revision 2.

Endurance Testing

picture of o-ringsLast, we look at the functional testing of the materials, referred to as dynamic or endurance testing. Both specifications require endurance testing on a pair of seals, which have been aged for a week at 225°F. The appropriate fluids are outlined in the table above.

Revision 2 has a gland design per Mil-G-5514. There is a 4” stroke length and the rod must travel 30 full cycles each minute. The rod is chromium plated with a surface finish between 16-32 microinches. PTFE anti-extrusion back up rings are necessary for the 3000 psi high pressure cycling. A temperature of 160°F is maintained for 70,000 strokes and then increased to 225°F for an additional 90,000 strokes.

Revision 6 has a much more demanding endurance test with fives phases and slightly different hardware. The rod must be a smooth 8 to 16 microinches Ra with a cross-hatched finish by lapping, and the cycle is 30 complete strokes per minute but only 3” rather than 4”, which means the speed can be more conservative. A pair of conditioned seals are placed in AS4716 grooves, adjacent to a PTFE back up ring. Similarities to Rev 2 are that there is a pressure of 3000 psi for the dynamic cycling at both 160°F and 225°F, however before and after each high temperature cycle there is a low temperature, -65°F soak. The first soak is static for 24 hours, followed by the 160°F high pressure cycling. The second low temperature soak requires 10 dynamic cycles at ambient pressure followed by 10 cycles at 3000 psi. The final low temperature soak requires one hour static sealing at 3000 psi followed by an 18 hour warm down period.

If you read carefully through the tests, you begin to see the Revision 6 seals must go through a more rigorous test with harsh low temperature, low pressure conditions. However, Revision 2 is not without its own challenges. The required hardware configuration; ie, low squeeze and more rough surface finish, is far from optimum and not what we recommend in actual service conditions. Added to the difficulty is the longer stroke length and faster speed. The fact that EM163-80 has passed both specifications proves it is the next generation EPDM seal material ready for flight.


Gallagher Fluid Seals is an authorized distributor of Parker. To learn more about how Gallagher Fluid Seals can help you, contact our engineering department at 1-800-822-4063

What to Know, Avoid, and Consider When Planning Seals for Medical Devices

Seals are one of the most important components in many medical devices. While small in cost, seals for medical devices have a profound affect on the function of said device and the outcome of a medical procedure.

Engineered sealing solutions have advanced to meet the new medical device designs due both to new materials and to new processes for producing these seals. An understanding of the fundamentals of seal design, the tools available to assist in the manufacturing process and pitfalls to avoid will help in achieving a successful seal and medical device outcome.

Classifying the three basic seal designs

When approaching a new seal design, It is important to classify the seal based on its intended function. All seals fall into one of three distinct groups. While certain applications may combine more than one group, there is always one that is dominant. The three basic seal designs are:

Static — seal applications where there is no movement.
Reciprocating — seal applications where there is linear motion.
Rotary — seal applications where there is rotation.
Static seal applications are the most common and include those that prevent fluids and drugs from escaping into or out of a medical device. The seal design can range from basic O-rings to complex shapes. Static seals can be found in the broadest range of medical devices from pumps and blood separators to oxygen concentrators.

trocar design
New advances in trocar designs incorporating specialized seals allow multiple instruments to be inserted in the single trocar.

A reciprocating seal application with linear motion would include endoscopes that require trocar seals. These trocar seals are complex in design and allow the surgeon to insert and manipulate instruments to accomplish the medical procedure. These procedures range from relatively simple hernia repairs to the most difficult cardiac procedures. All of these minimally invasive surgeries employ endoscopes with seals that rely on seal stretch, durability and ability to retain shape during lengthy and arduous procedures. This particular seal application combines both reciprocating and rotary motion with the main function being linear motion.

A rotary seal application most commonly includes O-rings used to seal rotating shafts with the turning shaft passing through the inside dimension of the O-ring. Systems utilizing motors such as various types of scanning systems require rotary seals but there are many other non-motorized applications that also require rotary seals. The most important consideration in designing a rotary seal is the frictional heat buildup, with stretch, squeeze and application temperature limits also important.

Function of a particular seal design

What is the function of the seal? It is important to identify specifically if the design must seal a fluid and be impermeable to a particular fluid. Or will the seal transmit a fluid or gas, transmit energy, absorb energy and/or provide structural support of other components in device assembly. All of these factors and combinations need to be thoroughly examined and understood to arrive at successful seal design.

A seal’s operating environment

In what environment will a seal operate? Water, chemicals and solvents can cause shrinkage and deformation of a seal. It is important therefore to identify the short and long term effects of all environmental factors including oxygen, ozone, sunlight and alternating effects of wet/dry situations. Equally important are the effects of constant pressure or changing pressure cycle and dynamic stress causing potential seal deformation.

There are temperature limits in which a seal will function properly. Depending on the seal material and design, a rotary shaft seal generally would be limited to an operating temperature range between -30° F and +225°F. To further generalize, the ideal operating temperature for most seals is at room temperature.

Expected seal life – How long must the seal perform correctly?

Continue reading What to Know, Avoid, and Consider When Planning Seals for Medical Devices

Tackling Flavor Transfer with Seals Made from Globally-Certified Materials

The popularity of multi-flavor drink dispensers, those touch screen wonders that offer dozens of beverage and flavor options to consumers, has grown during the past decade. Manufacturers are installing these complex machines in venues and locations throughout the world.

Elastomers and flavor transfer

But what’s great for an individual customer – a cherry-ginger-lime cream soda, for example – can play havoc with the elastomer seals inside the machine. Add in hygienic cleaning requirements and proper food contact certifications and equipment manufacturers can find themselves spending months chasing challenges like flavor transfer, leaks and material compliance approvals.

Freudenberg-NOK Sealing Technologies, a leading specialist in advanced sealing applications, has a portfolio of solutions to resolve these issues. The company, which runs the business operations for Freudenberg Sealing Technologies in the Americas, will showcase a variety of globally-certified material options at the 2018 BevTech®, the annual meeting of The International Society of Beverage Technologists (ISBT), taking place April 30-May 2 in Albuquerque, N.M.

“Flavors are almost never the same. They are a diverse mixture of ingredients with very different chemical properties.”

“Flavors are almost never the same. They are a diverse mixture of ingredients with very different chemical properties,” said Christian Geubert, Global Application Engineering Manager for Freudenberg Sealing Technologies’ Process Industries organization. “Some of these chemicals are very good solvents for rubber, which means they can destroy rubber seals and their performance. Only through extensive testing and analysis can industry challenges with flavor transfer and cleaning solutions be isolated, understood and successfully addressed with sealing materials and designs that address an entire range of conditions.”

Geubert will discuss the complex factors associated with flavor transfer and their impact on material properties and performance during a presentation at the 2018 BevTech® meeting. Following this presentation, Geubert and a team of Freudenberg experts will be on hand in booth #45 to answer questions and explain the advantages of a trio sealing materials including 70 EPDM 291, 70 FKM 727, and Fluoroprene® XP. Each of these materials is globally-certified for food contact in the United States (NSF-51) and the European Union (EC 1935/2004).

picture of flavor transfer seals

With its outstanding qualities in critical media, Freudenberg’s 70 EPDM 291 is the first choice for a wide variety of O-Rings, formed parts and diaphragm applications in the food and beverage industry. 70 EPDM 291 is compatible with bag-in-box (BIB) syrups, is suited for exposure to dispenser cleaning fluids, and is specifically formulated to resist flavor transfer.

Dynamic sealing at dispensing temperatures just above 32°F (0°C) is problematic for most Fluorocarbons (FKM) due to reduced flexibility. Freudenberg’s 70 FKM 727 is the only globally-certified, low-temperature FKM in the food and beverage industry. While maintaining compatibility with BIB syrups and cleaning agents, 70 FKM 727 adds best-in-class flexibility in this critical temperature range.

When standard EPDM and FKM materials fail to perform in particularly demanding food and beverage applications – including those found in high-ratio, multi-flavor dispensers – Freudenberg’s Fluoroprene® XP can be called into action. This unique, highly-fluorinated FKM is not only compatible with non-polar materials like oils, it also offers excellent compatibility with polar fluids like acids and bases and provides best-in-class flavor transfer resistance.


The original article can be found on Freudenberg’s website.

To learn more about Freudenberg products, speak to a Gallagher representative today by calling 1-800-822-4063

Solving High-Pressure, High Eccentricity Seal Issues

Facing challenges, head-on is what Vanseal does every day – which is why their customers trust them to deliver tested and proven, material and design solutions that improve the performance of their seals, no matter how tough the environment.

High-Pressure, High Eccentricity Seal Solution Demonstrates 50% Improvement

– On pressure and side-load performance of a fluid application

Recently, a customer was having difficulty with a seal failure on apicture of leoader fluid power application. The high-pressure, high-eccentricity seal operates in conditions up to 200,000 pv at 3000 psi and could not exceed maximum shaft deflection of 0.005″.

Vanseal works with these types of seal applications frequently and used a Unitized Seal that uses several components to address each of the various sealing challenges.

Vanseal’s solution for its high-pressure, high-eccentricity seal incorporated these key elements:

  • Primary Seal Lip – Made from a high-modulus elastomer, to reduce lip extrusion and inversion under pressure, better distributing high-pressure forces to enhance sealing
  • Machined PTFE Backup Lip – Used to reduce the risk of extrusion and inversion of the Primary Seal Lip
  • Support Washer – Designed to close the extrusion gap between the seal ID and shaft under high, shaft-deflection conditions
  • Excluder Lip – Works to keep contaminants from entering the assembly system
  • Metal Case – Serves as a carrier for the seal components creating a single unit to install, and thus reducing instances of installation errors caused by multi-piece installations and reducing individually purchased and inventoried items.

Vanseal has been manufacturing highly specialized seal components for over 60 years

  • Sealing systems are tricky and using a stock seal manufactured for typical high-pressure applications may not be enough to absorb high-shaft deflection.
  • Our experienced engineers have in-depth knowledge on how to address these difficult sealing challenges.
  • Along with engineering, we maintain the highest standards in quality testing and manufacturing methods.

The original article can be found on Vanseal’s website.

To learn more about Vanseal’s products, speak to a Gallagher representative today by calling 1-800-822-4063

Water Regulations and NSF 61 Compliant Elastomers

Replacing Aging Water Infrastructure With NSF Compliant Materials

There are over 155,000 public water systems in the United States and more than 286 million Americans who rely on community water systems daily.  Since most of the infrastructure was built between the early 1900’s and 1960 using outdated technology/products and capabilities, nearly everything is approaching the natural end of it’s lifespan.

Some estimates put the repairs and replacement of thePicture of NSF Compliant Gaskets infrastructure between $250B and $500B over the next 20-30 years. Several applications will need to be updated or fully replaced for the safety of consumers and quality of delivery, including:

  • Joining and sealing materials
  • Mechanical devices
  • Pipes or related products
  • Process media
  • Plumbing devices
  • Non-metallic potable water materials
  • Hydrants
  • and Public drinking water distribution (tanks and reservoirs, maters, individual components)

Joining and Sealing Materials

When these systems were being constructed and assembled decades ago, there were limited regulations and requirements that needed to be met. Gaskets, at least the traditional ones, were often made in two different ways: (1) Red Rubber (ASTM D1330 Grade 1 &2) with compressed non-asbestos or (2) cloth-inserted rubber with compressed asbestos.

However, today’s acceptable gasket requirements for the potable water industry differ greatly from those in the past. Gaskets have strict guidelines to abide by and must be:

  • Chemically resistant
  • NSF compliant
  • Food grade compliant
  • Electrically isolating

Because of the need for health and safety, the National Sanitation Foundation (NSF) was created in order to establish minimum requirements for the control of potential adverse human health effects from products that contact drinking water. In addition to gaskets, the NSF covers a variety of products and parts relevant to the water industry, including: pipes, hoses, fittings, cements, coatings, gaskets, adhesives, lubricants, media, water meters, valves, filters, faucets, fountains, and more.

So you might ask – why does the NSF require different materials and regulations for gaskets compared to years ago?

First things first – leaks are a major issue with the aging infrastructure. Improperly placed gaskets & seals or faulty products can cause leaks. This in turn could pose health risks to people drinking potable water or using products processed with potable water.

Additionally, the treatment process and chemicals utilized are Picture of NSF 61 Compliant Sealsdifferent from previous “standard” products. For example, research and testing over many years has concluded that traditional gaskets, which were used many years ago, could pose a safety threat to those drinking water processed with specific materials. This led to updated regulations for NSF 61’s drinking water system components.

Lastly, engineered sealing solutions are more important than ever. There’s a wide variety of custom engineered water systems throughout the U.S. – climate, geographic terrain, and the needs of the community are all reasons for why water infrastructure is so unique. Because of this, custom gaskets, seals, and other products are needed to supplement those systems.

Luckily there are many companies dedicated to providing the highest quality NSF 61 products. These trusted brands have proven materials to count-on when replacing or repairing water infrastructure:

Garlock’s NSF 61 Family of products

Parker’s NSF compliant products

Freudenberg’s new generation of NSF products

For more information on how Gallagher Fluid Seals’s engineers can help you with a custom solution, call us at 800.822.4063

The Basics of Microwave Absorber Materials

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.
Original content can be found on Parker’s Blog.


You’ve probably heard a bit about microwave absorbers and how they are used to reduce or absorb the energy that is present in a microwave. But what are they exactly? And how do they work? Go ahead, read on.

What are microwave absorbers?Picture of Microwave Absorber

Simply put, microwave absorbers are special materials, often elastomer or rubber based, which are designed to offer a user-friendly approach to the reduction of unwanted electromagnetic radiation from electronic equipment. They also work well to minimize cavity to cavity cross-coupling, and microwave cavity resonances. When comprised of a silicone elastomer matrix with ferrous filler material, microwave absorbers provide RF absorption performance over a broadband frequency range from 500 MHz to 18 GHz.

Continue reading The Basics of Microwave Absorber Materials

A Guide to Elastomer Technology in Mechanical Seals

Elastomer Technology in Mechanical Seals

Evaluate properties of rubber during installation and seal life.

Elastomers (or rubbers) are a ubiquitous family of materials whose use stretches across nearly the entire range of mechanical seal designs.  From plant-sourced natural rubber, so named by John Priestly in 1770 for its utility in rubbing away pencil graphite, to petroleum-sourced synthetic rubber first developed around the turn of the 20th century, the “elastomer” and their properties are familiar but should not be overlooked—especially when dealing with mechanical seals.

How Elastomers Work in Mechanical Seals

Rubber seals come in a variety of profiles—O-rings, cup gaskets, bellows diaphragms, sealing/wiper lips and many others. They are classified as either static or dynamic and create positive pressure
against surfaces to eliminate or control the leakage of liquids and/or gases while preventing the entrance of external contaminants such as dust and dirt. Static sealing occurs between adjacent surfaces with no relative motion, such as between the pump casing and cover. Due to frictional wear and heat generation, dynamic sealing is less straightforward, occurring between adjacent surfaces that are continuously or intermittently moving relative to another, such as between the pump casing and shaft.

In mechanical face seals, elastomers tend to take second chair because the primary seal—the dynamic seal between the housing and rotating shaft—is achieved by sliding contact between the pair of stiffer, lapped-flat sealing faces, one stationary in the housing and one rotating with the shaft. In many designs, rubber provides the secondary seal between each seal face and adjacent surface. One seal face is fixed and sealed statically using an O-ring or cup gasket. The other is spring-loaded and requires a semi-dynamic seal to accommodate some axial play, such as a dynamic O-ring in pusher-type mechanical face seals or elastomeric bellows in nonpusher ones. These semi-dynamic applications (involving flexing and sliding of the elastomer) can be critical for maintaining proper contact between the faces through face wear, shaft movement, etc.

Although the seal face pair tends to be the most critical design feature, mechanical face seals are  often used in the most demanding applications.

Rubber technology features prominently in radial lip seals, where typical applications have lower pressurevelocity (PV) values relative to those involving mechanical face seals. Still, the flexible elastomer lip must handle considerable relative motion in the form of shaft/bore rotation, reciprocation or a combination of both. In addition to standard designs and sizes, numerous customizations and proprietary approaches exist. The simplest designs rely on a single rubber lip’s inherent resiliency, although common enhancements include multiple sealing lips, a circumferential garter spring installed in a groove over the sealing lip to maintain contact with the shaft, and an auxiliary wiper lip or “excluder” to prevent abrasive dust or debris from compromising the primary sealing surface. For improving service life and performance in rotary applications, unidirectional or bidirectional hydrodynamic pumping aids can be added in the form of custom-shaped extrusions on the backside of the sealing lip to return leaked fluid to the sealing interface, increase lip lubrication and lower operating temperatures.

Diagram of secondary, dynamic elastomeric seals in mechanical face seals.

Benefits of Rubber

The definition of an elastomer provides initial insight into where rubber gets its resilient sealing quality: “a macromolecular material which, in the vulcanized state and at room temperature, can be stretched repeatedly to at least twice its original length and which, upon release of the stress, will immediately return to approximately its original length.”

When the rubber is squeezed by the adjacent surfaces of the clearance gap to be sealed, it has the characteristic
properties of malleably deforming and taking the shape of each  surface in response to the stress and applying a force back against the surfaces in its attempt to return to its original dimensions. Elastomers consist of large molecules called polymers (from the Greek “poly” meaning “many” and “meros” meaning “parts”), which are long chains of the same or different repeating units, called monomers, usually linked together by carbon-carbon bonds (the
most notable exception being silicone elastomers, which are linked by silicon-oxygen bonds). Soft and hard plastics are also composed of polymers. However, the regularity of the monomers in their polymer chains allows neighboring segments to align and form crystals, making the macromolecular plastic material rigid and inelastic.

One can prevent this crystallization by breaking up the regularity of the polymer chain, resulting usually in a viscous “gum” that is readily shaped into molds. At the molecular level, the polymer chains are similar to spaghetti-like strands flowing past each other.

During the process of vulcanization, Representatin of three polymer chains after formation of crosslinking via vulcanizationor curing, the viscous liquid is heated with sulfur or peroxides and other vulcanizing agents, and crosslinks form between polymer chains, tying them together with chemical bonds, converting the gum into an elastic, thermoset solid rubber that retains its shape after moderate deformation.

In addition to the selection and preparation of base polymer(s) and cure system ingredients, formulating the final rubber product, also known as compounding, involves five other broad categories of ingredients, which have percentage compositions expressed in parts per hundred rubber (phr). Fillers include various powders that thicken the polymer mixture, improve strength and resistance to abrasives, and reduce final cost. Plasticizers are oils and other liquid hydrocarbons that lower viscosity to ease processing, soften the final compound and in some cases improve low temperature performance. Process aids are specialized chemicals added in low concentrations to improve mixing, flow properties and final appearance.

Antidegradants protect the rubber from environmental attack. Finally, various miscellaneous ingredients may be added for special purposes, including foaming agents, dyes, fungicides, flame
retardants, abrasives, lubricants and electrically conductive particles. A simplified description of processing these ingredients includes mixing via tangential or intermeshing mixers, forming into desired shapes and vulcanizing into the final product.

Continue reading A Guide to Elastomer Technology in Mechanical Seals

The Rise of Metal Detectable O-Rings

Food Safety Modernization Act (FSMA)

Every year, nearly 1 in 6 people in the U.S. get sick (~48 million people), 100,000+ are hospitalized, and 3,000 die from foodborne illnesses or diseases, according to data from the CDC. Though this is largely a preventable problem, it still poses a significant public health burden.

The FDA Food Safety Modernization Act (FSMA), enacted by Congress in 2011, is “transforming the nation’s food safety system by shifting the focus from responding to foodborne illness to preventing it.”

Although one might think the relevancy of the FSMA isPastries on a Conveyor Belt more geared towards the food or beverage product itself, this act is actually vital to the processing operations in food, beverage, and pharmaceutical industry.

Over time, exposure to continuous vibration, volatile temperatures, and corrosive chemicals can cause O-rings in processing operations to become worn and eventually fail. When this occurs, particles of rubber from seals and gaskets can shear-off and migrate through sanitary systems, piping mechanisms, or by other means, eventually entering the product stream.

In some cases when a problem is discovered, equipment must be shut down and visual inspections conducted to find the source of contamination. This leads to downtime, lost production, and lost revenue. If the contaminant ends up in the supply chain, even more risk is assumed due to recalls or litigation.

Enter the metal detectable O-ring.

Continue reading The Rise of Metal Detectable O-Rings

Elastomer Seals for Instrumentation: Seal/Groove Design

Seal Design: Instrumentation IndustryGallagher recently released our High Performance Elastomer Seals for the Instrumentation Industry White Paper.  This was written by Russ Schnell, an Elastomer Consultant contracted by Gallagher Fluid Seals, and a former Senior Application Engineer with the Kalrez® perfluoroelastomer parts business at DuPont.  This white paper is now available for download on our Resources page.

Below is the third and final section of the white paper, which will discuss the importance of proper seal and groove design.


Proper Seal & Groove Design

Elastomer Seal: Perfluoroelastomer PartsProper seal design is a necessity for elastomer seals to perform reliably over the long term. Many of the instrument applications mentioned above use o-ring seals. The suggested compression for an elastomer o-ring seal to perform properly is typically a minimum of 16%, and a maximum of 30%. However, this range must also take into account the thermal expansion of an elastomer at elevated temperatures as well as any swell due to chemical exposure. Many of the elastomer seals used in instruments are small o-rings, which can create design issues. This is especially true for perfluoroelastomer parts which have a relatively high coefficient of thermal expansion (CTE). Fluoroelastomers have a lower CTE, making seal design easier at elevated temperatures.

Continue reading Elastomer Seals for Instrumentation: Seal/Groove Design

[VIDEO] How to Choose a Fluoroelastomer

Fluoroelastomer Basics - Consideration When Choosing a FluoroelastomerGallagher Fluid Seals recently posted our new Fluoroelastomer Basics webinar on gallagherseals.com.  This is the third and final section of our webinar, focusing on Considerations When Choosing a Fluoroelastomer. The full video is now available on our Resources page.

This video discusses considerations when choosing a fluoroelastomer, including temperature performance range, performance in harsh chemical exposure, and the need to take caution when using fluoroelastomer blends.