Category Archives: Elastomers

[VIDEO] Basic Understanding of Fluoroelastomers

Fluoroelastomer Basics - DOWNLOAD VIDEOGallagher Fluid Seals recently posted our new Fluoroelastomer Basics webinar on gallagherseals.com.  This is the first section of our webinar, focusing on the Basic Understanding of Fluoroelastomers. The full video is now available on our Resources page.

In this snippet, learn the differences between elastomers and fluoroelastomers, and how the amount of fluorine in an elastomer affects it’s chemical resistance and properties.

 

NEW! Elastomer Failure Modes – Part 4

Failure ModesGallagher recently published its Failure Modes of Elastomers in the Semiconductor Industry White Paper, now available for download on our site.  This white paper discusses common issues that occur with elastomer seals in the semiconductor industry. The excerpt below is the fourth and final section of our new white paper, discussing Volatiles (offgassing) and Particle Generation.  To download the white paper in its entirety, visit our Resources Page, or click on the image to the right.


Failure Modes of Elastomers in the Semiconductor Industry

Failure ModesHigh performance elastomers are found in many applications in the semiconductor industry (see paper titled Perfluoroelastomers in the Semiconductor Industry). Though perfluoroelastomer (FFKM) seals are formulated to meet the highest performance requirements of integrated circuit (chip) manufacturers, even these elastomers can’t solve every sealing application nor will they last forever in service. Additionally, end users need to understand subtle performance differences between perfluoroelastomers in the same product line. For example, one product may be better at minimizing particle generation while another may be better for high temperature services.

Continue reading NEW! Elastomer Failure Modes – Part 4

NEW! Fluoroelastomer Basics Webinar

Fluoroelastomer Basics - DOWNLOAD VIDEOGallagher Fluid Seals recently made our Fluoroelastomer Basics webinar available on the website.

This webinar will discuss:

  • Differences between an elastomer and a fluoroelastomer
  • The important role fluorine plays
  • Types of fluoroelastomers and their features and benefits
  • Material performance comparisons
  • Chemical resistance of fluoroelastomers
  • Temperature ratings of fluoroelastomers
  • Considerations when choosing the right fluoroelastomer for your application

What is an Elastomer?

Fluoroelastomer - Elastomer CrosslinksAn elastomer is made up of long chain polymers which are connected by crosslinks.  Crosslinks are analogous to springs and provide an “elastic” (recovery) nature to the material.  The crosslinks are relatively stable, but can break down under extreme temperatures and pressures.

Continue reading NEW! Fluoroelastomer Basics Webinar

NEW! Elastomer Failure Modes – Part 3

Failure ModesGallagher recently published its Failure Modes of Elastomers in the Semiconductor Industry White Paper, now available for download on our site.  This white paper discusses common issues that occur with elastomer seals in the semiconductor industry. The excerpt below is the third section of our new white paper, discussing O-Ring Stretch, Chemical Attack, Plasma Cracking, and Permeation.  To download the entire white paper, visit our Resources Page, or click on the image to the right.


Failure Modes of Elastomers in the Semiconductor Industry

Failure ModesHigh performance elastomers are found in many applications in the semiconductor industry (see paper titled Perfluoroelastomers in the Semiconductor Industry). Though perfluoroelastomer (FFKM) seals are formulated to meet the highest performance requirements of integrated circuit (chip) manufacturers, even these elastomers can’t solve every sealing application nor will they last forever in service. Additionally, end users need to understand subtle performance differences between perfluoroelastomers in the same product line. For example, one product may be better at minimizing particle generation while another may be better for high temperature services.

Continue reading NEW! Elastomer Failure Modes – Part 3

NEW! Elastomer Failure Modes – Part 2

Failure ModesGallagher recently published its Failure Modes for Elastomers in the Semiconductor Industry White Paper, now available for download on our site.  This white paper discusses common issues that occur with elastomer seals in the semiconductor industry. The excerpt below is the second section of our new white paper, discussing Loss of Sealing Force, and Extrusion.  To download the white paper in its entirety, visit our Resources Page, or click on the image to the right.


Failure Modes of Elastomers in the Semiconductor Industry

Failure ModesHigh performance elastomers are found in many applications in the semiconductor industry (see paper titled Perfluoroelastomers in the Semiconductor Industry). Though perfluoroelastomer (FFKM) seals are formulated to meet the highest performance requirements of integrated circuit (chip) manufacturers, even these elastomers can’t solve every sealing application nor will they last forever in service. Additionally, end users need to understand subtle performance differences between perfluoroelastomers in the same product line. For example, one product may be better at minimizing particle generation while another may be better for high temperature services.

Continue reading NEW! Elastomer Failure Modes – Part 2

NEW! Elastomer Failure Modes White Paper

Failure ModesGallagher recently published its Failure Modes of Elastomers in the Semiconductor Industry White Paper, now available for download on our site.  This white paper discusses common issues that occur with elastomer seals in the semiconductor industry. The excerpt below is the first section of our new white paper, discussing groove design and seal leakage.  To download the entire white paper, visit our Resources Page, or click on the image to the right.


Failure Modes for Elastomers in the Semiconductor Industry

Failure ModesHigh performance elastomers are found in many applications in the semiconductor industry (see paper titled Perfluoroelastomers in the Semiconductor Industry). Though perfluoroelastomer (FFKM) seals are formulated to meet the highest performance requirements of integrated circuit (chip) manufacturers, even these elastomers can’t solve every sealing application nor will they last forever in service. Additionally, end users need to understand subtle performance differences between perfluoroelastomers in the same product line. For example, one product may be better at minimizing particle generation while another may be better for high temperature services.

Continue reading NEW! Elastomer Failure Modes White Paper

Freudenberg’s Molding Process

Seals and molded rubber technical parts are mostly given their form in closed molds. The rubber mixture is heated inside them so that vulcanization and solidification can take place. After a very precisely defined heating time, the degree of cross-linking reaches its maximum level. Then the mold can be opened and the component removed.

There are many different molding processes. The most important of them – and the ones most frequently used at Freudenberg Sealing Technologies (FST) – are listed here.

Compression Molding
Compression MoldingCompression molding is one of the oldest ways to manufacture technical elastomer components. First, a blank is manufactured that is large enough to fill out the form of the component being produced. It is inserted into the component mold in the tool (tool cavity). The component is given its form by closing the tool in the press. Due to the heat of the heating plate in the press, high pressure builds up inside the tool due to thermal expansion, and the vulcanization process is initiated.

Continue reading Freudenberg’s Molding Process

How it’s Made… Freudenberg Elastomers

Freudenberg Sealing Technologies has more than 1,500 elastomer mixtures, each created to suit a variety of different operating parameters.  But where does the raw material for your Silicone, Fluoro, or Perfluoroelastomer seal come from, and how does it start the process of becoming a seal?

Elastomers - Mixing 2Elastomers are multi-component systems that are composed of up to 15 different raw materials. Given their very different weight proportions and an extremely wide range of textures, the individual raw materials must be mixed together homogeneously. While rubber is delivered in ball or chip form and is only capable of flowing at the processing temperature, softeners are generally present in the form of flowable oils. The goal of mixing is to distribute all the required raw materials evenly within the polymer matrix and to break up agglomerates to allow the optimal bonding of the filler particles to the polymer. For the most part, the variety of different components cannot be incorporated in a single work step. This is particularly true for mixtures that contain fine soots or natural rubber as their polymer base.

Continue reading How it’s Made… Freudenberg Elastomers

Introduction to Perfluoroelastomers – Part 2

Perfluoroelastomers: DownloadGallagher recently released our Introduction to Perfluoroelastomers White Paper, available for download on our site.  This was written by Russell Schnell, a current contracted employee of Gallagher Fluid Seals, and more importantly, a former Senior Application Engineer with the Kalrez® perfluoroelastomer parts business at DuPont.  The following is the second excerpt from the White Paper, discussing the common industries in which perfluoroelastomer seals are used, and why.


Common Industries in Which Perfluoroelastomer Seals are Used and Why
In general, perfluoroelastomers are the most expensive elastomer seals specified in the marketplace; however they also provide the highest performance sealing service. As with any product, the selection of these products should be the result of a cost-benefit analysis.

Oil Processing Industry
Perfluoroelastomers - Oil ProcessingOne of the earliest uses of perfluoroelastomer seals was in the oil industry (down-hole).  Seals used in down-hole oil applications required resistance to high temperatures and aggressive chemicals. Sour oil and gas, resulting from H2S, often caused swift degradation of fluoroelastomer seals. The ability of perfluoroelastomer seals to resist H2S was a major reason for their selection and use. Over time, as wells became deeper and deeper, the application temperatures increased. As a result, in addition to aggressive chemicals, better high temperature resistance was needed and FFKM seals provided that benefit. Finally, seals used in these applications must have an “acceptable” service life. Oil wells are expected to last for many years and a seal failure, especially during initial exploration results in lost time and great expense when down-hole equipment must be retrieved to repair a seal. So the important points for this industry are resistance to aggressive chemicals, high temperatures, and reduced chance of seal failure which can result in tremendous expense.

Continue reading Introduction to Perfluoroelastomers – Part 2

The Continuous Improvement of Elastomers: Part 2

The spectrum of elastomers range from very simple forms, like the natural rubber already in use in the 19th century, to modern, high performance elastomers from the second half of the 20th century.  They are continually being improved.

This blog article is the second in a two-part series discussing the many different elastomer materials available today, as discussed in Freudenberg’s The World of Freudenberg Sealing Technologies.
The first post discussed Natural Rubber (NR), Nitrile Rubber (NBR), and Hydrogenated Nitrile Rubber (HNBR).

Polyacrylate Rubber (ACM)
Elastomers - ACMACM elastomers are made of polar acrylic acids. As polar materials, they display good resistance to high-additive lubricating oils. Due to its saturated¹ main chain, the material exhibits good resistance to ozone, weather and heated air. Petroleum-based oils and fluids (for engines, transmissions and automatic transmissions) cannot harm them. But the material offers only moderate strength and low elasticity while displaying limited cold behavior.

Continue reading The Continuous Improvement of Elastomers: Part 2