Category Archives: Elastomers

[VIDEO] How to Choose a Fluoroelastomer

Fluoroelastomer Basics - Consideration When Choosing a FluoroelastomerGallagher Fluid Seals recently posted our new Fluoroelastomer Basics webinar on gallagherseals.com.  This is the third and final section of our webinar, focusing on Considerations When Choosing a Fluoroelastomer. The full video is now available on our Resources page.

This video discusses considerations when choosing a fluoroelastomer, including temperature performance range, performance in harsh chemical exposure, and the need to take caution when using fluoroelastomer blends.

[VIDEO] Fluoroelastomer Materials

Gallagher Fluid Seals recently posted our new Fluoroelastomer Basics webinar on gallagherseals.com.  This is the second section of our webinar, focusing on Fluoroelastomer Materials. The full video is now available on our Resources page.

This section of the video discusses different fluoroelastomer materials, along with their mechanical and physical properties, and in which applications they’re normally found.

[VIDEO] Basic Understanding of Fluoroelastomers

Fluoroelastomer Basics - DOWNLOAD VIDEOGallagher Fluid Seals recently posted our new Fluoroelastomer Basics webinar on gallagherseals.com.  This is the first section of our webinar, focusing on the Basic Understanding of Fluoroelastomers. The full video is now available on our Resources page.

In this snippet, learn the differences between elastomers and fluoroelastomers, and how the amount of fluorine in an elastomer affects it’s chemical resistance and properties.

 

NEW! Elastomer Failure Modes – Part 4

Failure ModesGallagher recently published its Failure Modes of Elastomers in the Semiconductor Industry White Paper, now available for download on our site.  This white paper discusses common issues that occur with elastomer seals in the semiconductor industry. The excerpt below is the fourth and final section of our new white paper, discussing Volatiles (offgassing) and Particle Generation.  To download the white paper in its entirety, visit our Resources Page, or click on the image to the right.


Failure Modes of Elastomers in the Semiconductor Industry

Failure ModesHigh performance elastomers are found in many applications in the semiconductor industry (see paper titled Perfluoroelastomers in the Semiconductor Industry). Though perfluoroelastomer (FFKM) seals are formulated to meet the highest performance requirements of integrated circuit (chip) manufacturers, even these elastomers can’t solve every sealing application nor will they last forever in service. Additionally, end users need to understand subtle performance differences between perfluoroelastomers in the same product line. For example, one product may be better at minimizing particle generation while another may be better for high temperature services.

Continue reading NEW! Elastomer Failure Modes – Part 4

NEW! Fluoroelastomer Basics Webinar

Fluoroelastomer Basics - DOWNLOAD VIDEOGallagher Fluid Seals recently made our Fluoroelastomer Basics webinar available on the website.

This webinar will discuss:

  • Differences between an elastomer and a fluoroelastomer
  • The important role fluorine plays
  • Types of fluoroelastomers and their features and benefits
  • Material performance comparisons
  • Chemical resistance of fluoroelastomers
  • Temperature ratings of fluoroelastomers
  • Considerations when choosing the right fluoroelastomer for your application

What is an Elastomer?

Fluoroelastomer - Elastomer CrosslinksAn elastomer is made up of long chain polymers which are connected by crosslinks.  Crosslinks are analogous to springs and provide an “elastic” (recovery) nature to the material.  The crosslinks are relatively stable, but can break down under extreme temperatures and pressures.

Continue reading NEW! Fluoroelastomer Basics Webinar

NEW! Elastomer Failure Modes – Part 3

Failure ModesGallagher recently published its Failure Modes of Elastomers in the Semiconductor Industry White Paper, now available for download on our site.  This white paper discusses common issues that occur with elastomer seals in the semiconductor industry. The excerpt below is the third section of our new white paper, discussing O-Ring Stretch, Chemical Attack, Plasma Cracking, and Permeation.  To download the entire white paper, visit our Resources Page, or click on the image to the right.


Failure Modes of Elastomers in the Semiconductor Industry

Failure ModesHigh performance elastomers are found in many applications in the semiconductor industry (see paper titled Perfluoroelastomers in the Semiconductor Industry). Though perfluoroelastomer (FFKM) seals are formulated to meet the highest performance requirements of integrated circuit (chip) manufacturers, even these elastomers can’t solve every sealing application nor will they last forever in service. Additionally, end users need to understand subtle performance differences between perfluoroelastomers in the same product line. For example, one product may be better at minimizing particle generation while another may be better for high temperature services.

Continue reading NEW! Elastomer Failure Modes – Part 3

NEW! Elastomer Failure Modes – Part 2

Failure ModesGallagher recently published its Failure Modes for Elastomers in the Semiconductor Industry White Paper, now available for download on our site.  This white paper discusses common issues that occur with elastomer seals in the semiconductor industry. The excerpt below is the second section of our new white paper, discussing Loss of Sealing Force, and Extrusion.  To download the white paper in its entirety, visit our Resources Page, or click on the image to the right.


Failure Modes of Elastomers in the Semiconductor Industry

Failure ModesHigh performance elastomers are found in many applications in the semiconductor industry (see paper titled Perfluoroelastomers in the Semiconductor Industry). Though perfluoroelastomer (FFKM) seals are formulated to meet the highest performance requirements of integrated circuit (chip) manufacturers, even these elastomers can’t solve every sealing application nor will they last forever in service. Additionally, end users need to understand subtle performance differences between perfluoroelastomers in the same product line. For example, one product may be better at minimizing particle generation while another may be better for high temperature services.

Continue reading NEW! Elastomer Failure Modes – Part 2

NEW! Elastomer Failure Modes White Paper

Failure ModesGallagher recently published its Failure Modes of Elastomers in the Semiconductor Industry White Paper, now available for download on our site.  This white paper discusses common issues that occur with elastomer seals in the semiconductor industry. The excerpt below is the first section of our new white paper, discussing groove design and seal leakage.  To download the entire white paper, visit our Resources Page, or click on the image to the right.


Failure Modes for Elastomers in the Semiconductor Industry

Failure ModesHigh performance elastomers are found in many applications in the semiconductor industry (see paper titled Perfluoroelastomers in the Semiconductor Industry). Though perfluoroelastomer (FFKM) seals are formulated to meet the highest performance requirements of integrated circuit (chip) manufacturers, even these elastomers can’t solve every sealing application nor will they last forever in service. Additionally, end users need to understand subtle performance differences between perfluoroelastomers in the same product line. For example, one product may be better at minimizing particle generation while another may be better for high temperature services.

Continue reading NEW! Elastomer Failure Modes White Paper

Freudenberg’s Molding Process

Seals and molded rubber technical parts are mostly given their form in closed molds. The rubber mixture is heated inside them so that vulcanization and solidification can take place. After a very precisely defined heating time, the degree of cross-linking reaches its maximum level. Then the mold can be opened and the component removed.

There are many different molding processes. The most important of them – and the ones most frequently used at Freudenberg Sealing Technologies (FST) – are listed here.

Compression Molding
Compression MoldingCompression molding is one of the oldest ways to manufacture technical elastomer components. First, a blank is manufactured that is large enough to fill out the form of the component being produced. It is inserted into the component mold in the tool (tool cavity). The component is given its form by closing the tool in the press. Due to the heat of the heating plate in the press, high pressure builds up inside the tool due to thermal expansion, and the vulcanization process is initiated.

Continue reading Freudenberg’s Molding Process

How it’s Made… Freudenberg Elastomers

Freudenberg Sealing Technologies has more than 1,500 elastomer mixtures, each created to suit a variety of different operating parameters.  But where does the raw material for your Silicone, Fluoro, or Perfluoroelastomer seal come from, and how does it start the process of becoming a seal?

Elastomers - Mixing 2Elastomers are multi-component systems that are composed of up to 15 different raw materials. Given their very different weight proportions and an extremely wide range of textures, the individual raw materials must be mixed together homogeneously. While rubber is delivered in ball or chip form and is only capable of flowing at the processing temperature, softeners are generally present in the form of flowable oils. The goal of mixing is to distribute all the required raw materials evenly within the polymer matrix and to break up agglomerates to allow the optimal bonding of the filler particles to the polymer. For the most part, the variety of different components cannot be incorporated in a single work step. This is particularly true for mixtures that contain fine soots or natural rubber as their polymer base.

Continue reading How it’s Made… Freudenberg Elastomers