Tag Archives: fluoroelastomer

VA179: Industry Leading High Temperature FKM

High Temperature FKM - VA179The O-Ring & Engineered Seals Division of Parker Hannifin Corporation, the global leader in motion and control technologies, recently announced the launch of VA179, a new extreme high temperature fluorocarbon (FKM) compound. VA179 is an innovative, 70 durometer rubber seal material providing increased high temperature limits while maintaining chemical resistance and low temperature sealing consistent with standard FKMs.

VA179 consists of a breakthrough rubber technology increasing the FKM continuous high temperature limit an additional 20°C (68ºF) over standard FKM materials on the market today. This provides a new industry sealing solution to long-term compression set issues for customers using traditional fluorocarbons and silicones.

“In markets such as aerospace, automotive, and heavy-duty, we are frequently challenged to expand the temperature capabilities of our rubber compounds,” says Nathaniel Sowder, aerospace, military and chemical processing business development engineer, O-Ring & Engineered Seals Division, “With the launch of VA179, we now have a solution that will reach higher temperatures without sacrificing the low temperature and chemical resistance attributes that make standard FKM such a popular choice.”

Continue reading VA179: Industry Leading High Temperature FKM

NEW White Paper! Elastomer Seals for Instrumentation

Instrumentation - High Performance SealsGallagher recently released our High Performance Elastomer Seals for the Instrumentation Industry White Paper, available for download on our site.  This was written by Russ Schnell, an Elastomer Consultant contracted by Gallagher Fluid Seals, and a former Senior Application Engineer with the Kalrez® perfluoroelastomer parts business at DuPont.  This white paper is now available for download on our Resources page.

Introduction

The term instrumentation covers a wide variety of applications. In the broadest sense, instrumentation may be considered as any equipment used for measurements. This equipment may be in a process stream and include devices such as flowmeters, pressure gages, and inline probes. Data from these devices are used for process control. In automobiles, sensors are used for a variety of applications including measuring the exhaust stream to “tune” the engine to yield maximum performance. Analytical laboratory instruments such as chromatographs and flame ionization detectors are used to determine the composition of samples. Instruments are used in the medical industry for product analysis as well as analysis of blood and urine samples. Of course this is only a partial list of the many applications involving instruments.

Continue reading NEW White Paper! Elastomer Seals for Instrumentation

[VIDEO] How to Choose a Fluoroelastomer

Fluoroelastomer Basics - Consideration When Choosing a FluoroelastomerGallagher Fluid Seals recently posted our new Fluoroelastomer Basics webinar on gallagherseals.com.  This is the third and final section of our webinar, focusing on Considerations When Choosing a Fluoroelastomer. The full video is now available on our Resources page.

This video discusses considerations when choosing a fluoroelastomer, including temperature performance range, performance in harsh chemical exposure, and the need to take caution when using fluoroelastomer blends.

NEW! Fluoroelastomer Basics Webinar

Fluoroelastomer Basics - DOWNLOAD VIDEOGallagher Fluid Seals recently made our Fluoroelastomer Basics webinar available on the website.

This webinar will discuss:

  • Differences between an elastomer and a fluoroelastomer
  • The important role fluorine plays
  • Types of fluoroelastomers and their features and benefits
  • Material performance comparisons
  • Chemical resistance of fluoroelastomers
  • Temperature ratings of fluoroelastomers
  • Considerations when choosing the right fluoroelastomer for your application

What is an Elastomer?

Fluoroelastomer - Elastomer CrosslinksAn elastomer is made up of long chain polymers which are connected by crosslinks.  Crosslinks are analogous to springs and provide an “elastic” (recovery) nature to the material.  The crosslinks are relatively stable, but can break down under extreme temperatures and pressures.

Continue reading NEW! Fluoroelastomer Basics Webinar

Semiconductor Manufacturing – Summary

Semiconductor Manufacturing - Wet Processes

NEW White Paper Available!

Gallagher Fluid Seals recently added a new white paper to its Resources Page, Perfluoroelastomers for the Semiconductor Industry, written by Russ Schnell.  Below is an excerpt from the new white paper discussing the key reasons to choose perfluoroelastomers over fluoroelastomers for semiconductor manufacturing.  You can download the white paper in its entirety by clicking on the thumbnail to the right.

 


Perfluoroelastomers (e.g. Kalrez® parts), often replace fluoroelastomer (e.g. Viton®) in semiconductor applications. However, even though perfluoroelastomers are the highest performance elastomers, there are still subtle differences between products. It is suggested that the elastomer supplier be contacted regarding the optimum product and seal design for specific applications. As mentioned above the key characteristics of perfluoroelastomers include:

  • Lower offgassing than other elastomers, especially at temperatures above 200°C, which lowers the risk of product contamination.
  • Better sealing force retention (lower compression set) at temperatures over 200°C, which is critical for longer service.
    Best overall chemical resistance of any elastomer family.
  • Formulations with extremely low particle generation in aggressive process environments.
  • Generally higher gas permeation than fluoroelastomers.
  • Higher coefficient of thermal expansion when compared to fluoroelastomers. Proper seal design will account for this and optimize performance.

Continue reading Semiconductor Manufacturing – Summary

New Sealing Material HiFluor® FB

Article re-posted with permission from Parker Hannifin Sealing & Shielding Team.
Original content can be found on Parker’s Blog.


New Sealing Material HiFluor® FB for Hygienically Sensitive Applications

HiFluor® FB - Hygienically Sensitive Sealing MaterialBe it in the production of food, pharmaceuticals and cosmetics or medical devices coming into contact with the human body, excellent purity and media resistance combined with a wide range of robust properties is always required of the materials used for the components in the manufacturing processes. Specifically for these challenging applications, Parker has developed a new sealing compound with very good mechanical properties and excellent permanent elasticity: HiFluor® FB V8991.

Fluoroelastomeric materials have proven their viability in chemical and food processing, cosmetics, pharmaceutical and life science applications involving non-polar solvents, aliphatic compounds, greases, oils and aromatic substances whenever the resistance of standard materials such as hydrogenated nitrile butadiene rubber (HNBR) and ethylene propylene rubber (EPDM) is no longer sufficient.

Innovative “Pure” Sealing Solution HiFluor® FB V8991

As a compound and seal manufacturer, Parker Prädifa, in the light of the growing demands made on sealing elements in the aforementioned markets, has developed a HiFluor® FB compound with very good mechanical properties and excellent permanent elasticity.

Continue reading New Sealing Material HiFluor® FB

Introduction to Perfluoroelastomers – Part 3

Perfluoroelastomers: DownloadGallagher recently released our Introduction to Perfluoroelastomers White Paper, available for download on our site.  This was written by Russell Schnell, a current contracted employee of Gallagher Fluid Seals, and more importantly, a former Senior Application Engineer with the Kalrez® perfluoroelastomer parts business at DuPont.  The following is the third and final excerpt from the White Paper, discussing seal design and a cost-benefit analysis of using perfluoroelastomer seals.


Seal Design with Perfluoroelastomer Seals
PerfluoroelastomersCare must be taken when designing and using seals made of perfluoroelastomers. These elastomers typically have a higher coefficient of thermal expansion when compared to other elastomers; plus, they are often used at higher temperatures. If the seal gland design is not correct, seal extrusion will occur, resulting in seal failure. For example, a fluoroelastomer seal is scheduled for replacement with a perfluoroelastomer seal, due to high application temperatures. Shortly after this substitution, the FFKM seal fails due to extrusion. The probable cause is that the seal gland volume was too small to accommodate the thermal expansion of the high performance perfluoroelastomers, a factor that many of today’s seal design handbooks do not adequately take into account.

Continue reading Introduction to Perfluoroelastomers – Part 3

Introduction to Perfluoroelastomers – Part 2

Perfluoroelastomers: DownloadGallagher recently released our Introduction to Perfluoroelastomers White Paper, available for download on our site.  This was written by Russell Schnell, a current contracted employee of Gallagher Fluid Seals, and more importantly, a former Senior Application Engineer with the Kalrez® perfluoroelastomer parts business at DuPont.  The following is the second excerpt from the White Paper, discussing the common industries in which perfluoroelastomer seals are used, and why.


Common Industries in Which Perfluoroelastomer Seals are Used and Why
In general, perfluoroelastomers are the most expensive elastomer seals specified in the marketplace; however they also provide the highest performance sealing service. As with any product, the selection of these products should be the result of a cost-benefit analysis.

Oil Processing Industry
Perfluoroelastomers - Oil ProcessingOne of the earliest uses of perfluoroelastomer seals was in the oil industry (down-hole).  Seals used in down-hole oil applications required resistance to high temperatures and aggressive chemicals. Sour oil and gas, resulting from H2S, often caused swift degradation of fluoroelastomer seals. The ability of perfluoroelastomer seals to resist H2S was a major reason for their selection and use. Over time, as wells became deeper and deeper, the application temperatures increased. As a result, in addition to aggressive chemicals, better high temperature resistance was needed and FFKM seals provided that benefit. Finally, seals used in these applications must have an “acceptable” service life. Oil wells are expected to last for many years and a seal failure, especially during initial exploration results in lost time and great expense when down-hole equipment must be retrieved to repair a seal. So the important points for this industry are resistance to aggressive chemicals, high temperatures, and reduced chance of seal failure which can result in tremendous expense.

Continue reading Introduction to Perfluoroelastomers – Part 2

The Continuous Improvement of Elastomers: Part 2

The spectrum of elastomers range from very simple forms, like the natural rubber already in use in the 19th century, to modern, high performance elastomers from the second half of the 20th century.  They are continually being improved.

This blog article is the second in a two-part series discussing the many different elastomer materials available today, as discussed in Freudenberg’s The World of Freudenberg Sealing Technologies.
The first post discussed Natural Rubber (NR), Nitrile Rubber (NBR), and Hydrogenated Nitrile Rubber (HNBR).

Polyacrylate Rubber (ACM)
Elastomers - ACMACM elastomers are made of polar acrylic acids. As polar materials, they display good resistance to high-additive lubricating oils. Due to its saturated¹ main chain, the material exhibits good resistance to ozone, weather and heated air. Petroleum-based oils and fluids (for engines, transmissions and automatic transmissions) cannot harm them. But the material offers only moderate strength and low elasticity while displaying limited cold behavior.

Continue reading The Continuous Improvement of Elastomers: Part 2

Introduction to Perfluoroelastomers – Part 1

Perfluoroelastomers: DownloadGallagher recently released our Introduction to Perfluoroelastomers White Paper, available for download on our site.  This was written by Russell Schnell, a current contracted employee of Gallagher Fluid Seals, and more importantly, a former Senior Application Engineer with the Kalrez® perfluoroelastomer parts business at DuPont.  The following excerpt is the first section of the White Paper, discussing the history or elastomers and perfluoroelastomers, and the chemistry that helped create these modern materials.


Introduction to the World of Perfluoroelastomers
The use of elastomers is widespread in our world. Elastomers have many uses including: sealing fluids, for tires, in chemical plants, in semiconductor manufacturing equipment, for dust and moisture seals on cell phones, and seals on aircraft engines. The function of the elastomer and technology involved can vary from something as simple as a barrier to rain water, to seals in automobile engines, to critical sealing applications on the Space Station. Selection of the correct elastomer in an application is very important for successful and long term equipment operation. Although many different elastomers exist in the marketplace, when the highest service performance is needed, in terms of chemical and high temperature resistance, the choice is perfluoroelastomers.Perfluoroelastomer - Perfluoroelastomers

A perfluoroelastomer can be represented by the letters: FFKM or FFPM (ASTM and ISO designations, respectively). The word itself has two parts, perfluoro (meaning fully fluorinated), and elastomer.   Perfluoroelastomers exhibit many properties similar to PTFE (polytetrafluoroethylene), which is also fully fluorinated and considered inert to almost all solvents.  PTFE is often referred to as Teflon®, which is a registered trademark of The Chemours Company.  PTFE is a plastic, and when compressed, will not recover to its original shape. However, elastomers contain crosslinks, which act as springs to give the material resiliency and the ability to recover after a part has been compressed.  This resistance to permanent compression (compression set) gives the material the ability to maintain a seal over time. Finally, while whereas plastics are crystalline, elastomers are amorphous at room temperature; they can be easily compressed and will mold themselves to maintain a seal.  Given the chemical structure and performance similarities of FFKMs to PTFE, perfluoroelastomers are sometimes referred to as an elastomeric form of PTFE.

Continue reading Introduction to Perfluoroelastomers – Part 1